
Algorithms and Data
Structures (ICS0005)
6 ECTS

Exam

Jaanus Pöial, PhD

https://enos.itcollege.ee/~japoia/

Schedule

Lectures – every week

Labs – every second week (see SIS)

7 homeworks in Moodle using Java

https://moodle.taltech.ee/course/view.php?id=18143

https://enos.itcollege.ee/~japoia/algorithms/

Textbook: Michael T. Goodrich, Roberto Tamassia. Data Structures

and Algorithms in Java. John Wiley and Sons, Inc.

https://moodle.taltech.ee/course/view.php?id=18143
https://enos.itcollege.ee/~japoia/algorithms/

Topics

Algorithms, properties of algorithms, time complexity
and space complexity, asymptotic behaviour of
functions, analysis of algorithms, main complexity
classes

Searching and sorting. Linear search, binary search,
hashing. Insertion sort, binary insertion sort, quicksort,
merge sort, counting sort, radix sort, bucket sort.
Complexity of different methods

Abstract data types. Stacks and queues. Reverse Polish
Notation (RPN). Linked lists and other pointer structures

Trees. Examples of trees - arithmetic expression tree.
Traversal of trees - preorder, postorder, in-order. Forms of
expression for trees - parenthetic expressions, pointer
structures, textual representation. Examples of "top-down"
and "bottom-up" traversal

Graphs. Directed and undirected graphs, multigraphs.
Cyclic and acyclic graphs. Connected components.
Strongly connected and weakly connected graphs. Paths
and cycles. Simple graphs. Matrices related to graphs:
adjacency matrix, matrix of shortest pathlengths.
Operations on graphs: sum, multiplication, transitive
closure. Representation and implementation of graphs.
Algorithms on graphs: Floyd-Warshall (lengths of shortest
paths), topological sort of vertices, depth-first and
breadth-first traversal, Dijkstra (shortest path), finding
connected components, minimal spanning tree

Recursion: Hanoi towers, elimination of recursion, tail
recursion. Exhaustive search: 8 queens problem,
knapsack problem

Binary search trees, AVL trees, red-black trees, binomial
trees. B-trees. Heaps, heapsort

String algorithms: exact matching (linear, Knuth-Morris-
Pratt, Boyer-Moore, Rabin-Karp)

Coding and compressing, coding schemes: Huffman,
Shannon-Fano. Greedy algoritms: Huffman encoding

Dynamic programming: longest common subsequence
problem

Correctness of algorithms: preconditions,
postconditions, loop invariants, weakest precondition,
structural rules, total correctness and partial correctness,
halting problem

Exam

Java – History

1991 - P. Naughton, J. Gosling: project "Green", Sun virtual
machine, Oak ==> Java

1992 - "*7" - video-, cableTV equipment

1993 - Mosaic ==> HotJava web browser (P.Naughton, J.Payne)

1996 - JDK 1.02 Java

1997 – JDK 1.1 AWT, UniCode

1998 - Java 2 (JDK 1.2..) Swing

1999 – J2EE Collections API

2004 – Java 5 Generic data types, autoboxing

2014 – Java 8 (LTS) lambdas, streams, default methods

2017 – Java 9 modules, linking, JShell

2018 – Java 10 var-types

2018 – Java 11 (LTS) var-types inside lambdas

2019 – Java 12 switch-expressions

2019 – Java 13 new „->“-switch statement, text blocks

in triple-quotes

2020 – Java 14 records

2021 – Java 17 (LTS) hidden and weak classes

2023 – Java 21 (LTS) sealed classes/interfaces

2024 – Java 23 foreign functions (e.g. C) / memory API

https://en.wikipedia.org/wiki/Java_version_history

Release Family GA End Of Support Life (EOSL)

21 LTS 19th September 2023 September 2031

20 21st March 2023 September 2023

19 20th September 2022 March 2023

18 22nd March 2022 September 2022

17 LTS 14th September 2021 September 2029

16 16th March 2021 September 2021

15 15th September 2020 March 2021

14 17th March 2020 September 2020

13 17th September 2019 March 2020

12 19th March 2019 September 2019

11 LTS 25th September 2018 September 2026

10 20th March 2018 September 2018

9 21st September 2017 March 2018

8 LTS 18th March 2014 December 2030

7 LTS 11th July 2011 July 2022

6 LTS 12th December 2006 December 2018

5 LTS 30th September 2004 July 2015

4 LTS 13th February 2002 March 2013

3 LTS 8th May 2000 April 2011

2 LTS 4th December 1998 December 2003

1.1 LTS 28th March 1997 January 2003

1 LTS 23rd January 1996 October 2002

Features

C-like syntax, simpler than C++ (more similar to C#)

No preprocessor

Object oriented (single inheritance until Java 7, automatic
garbage collection, late binding, abstract classes and
interfaces)

Standard and rich APIs (graphics, I/O, data structures,
networking, multithreading, …)

Standard documentation format and documenting tools

Features

Supported by variety of development environments
(IDEs): IntelliJ, Eclipse, NetBeans, …

Mostly interpretive language, binary representation of a
program is platform independent Java bytecode
interpreted by Java Virtual Machine (JVM)

JIT (just-in-time) compilation to machine code

JVM is used by many other languages (Scala, Clojure,
Groovy, Kotlin, ...)

Drawbacks

Low-level (hardware) programming is hard

Interpretive => slow (bias); not true anymore

Not flexible enough to create totally new
abstractions; better starting from Java 8

Not suited for beginners, simple programs look
complex, steep learning curve, huge ecosystem

General Structure

Platform API = “technology” (J2SE, J2EE, J2ME, JFX,
JavaCard, Java DB, Java TV…)
Java SE – Java Standard Edition, JDK 17 (JRE included)

Modules (>Java 9): java.base, javafx.base, javafx…., …

Packages (flat namespace): java.lang, java.util,
java.io, java.nio, java.net, java.math, …
Default package is unnamed, package java.lang is

always present, other packages need to be imported

Classes, interfaces, abstract classes – hierarchy (single
inheritance for classes, multiple interfaces allowed)
Class Object is the root of class tree and default parent

class if „extends“ clause is missing

Structure of the Class

Data
Class variables (static), common for all objects, e.g.
constants (final)
Instance variables, individual data, also known as
“attributes” or “fields” or “properties”
Possible inner classes, …

Actions
Class methods (static), imperative paradigm

Constructors to create new objects

Instance methods (work on objects)

JDK – Java Development Kit

javac – Java compiler, X.java => X.class

java - Java interpreter, executes X.class

javadoc – documentation generator, generates *.html
from javadoc comments in program source

…

Examples

Life cycle of a program:
edit, compile, debug syntax, …, run, debug semantics, …, run,

test, …, test …

First.java

demo/Example.java

Control.java

Statements (as in Java 8)

block { declarations; statements }

expression
• method call: String.valueOf (56); s.length();
• constructor call: new StringBuilder();
• assignment: variable = expression
• complex expression containing operators: a+b*(c-d)

empty statement and labelled statement

if statement and if-else statement

switch statement (new approach in Java 12 and 13)

for statement

while statement and do-while statement

break statement

continue statement

return statement

throw statement

try-catch construction (try statement)

synchronized (object) block;

(synchronized statement)

assert statement

Examples

Mswitch

Mswitchbreak

Data Structures in Java

Simple variables: primitive types and object types

Arrays: base type, index, length

Objects: encapsulate different fields into one instance
(like records in “old” imperative languages + methods)

Collections – built-in tools in Java API to manipulate
group of objects: Vector, Hashtable, etc. Java collections
framework

Types

Primitive types: byte, short, int, long, float, double,
boolean, char

Object types:
• Wrappers: Byte, Short, Integer, Long, Float, Double,

Boolean, Character
• Other API types: String, Object, StringBuffer, …
• Interface types: Comparable, Runnable, …

Arrays

Array creation and initialization

int [] a = { 1, 5, 8 };

consists of 3 steps:

int [] a; // variable declared

a = new int [3]; // memory allocated

a[0]=1; a[1]=5; a[2]=8; // values assigned

int n = a.length; // array size

Array expression:

int [] a = new int [] { 1, 5, 8};

Multi-dimensional Arrays

2-dimensional array is an array of 1-dimensional
arrays (NB! these can be of different length):

int [][] m; // 2-dim array

m = new int [2][]; // first level

System.out.println (m.length);

m[0] = new int [4]; // second level

m[0][0] = -8;

m[1] = new int [3]; // different size

m[1][0] = 9;

Objects

Object fields:

class Person {

String surname;

String firstName;

Calendar birthDate;

// etc. whatever we want to record

Constructors

Person (String sn, String fn, Calendar bd) {

surname = sn;

firstName = fn;

birthDate = bd;

} // constructor

Person() {

this (“*”, “*”, Calendar.getInstance());

} // default constructor

Instance Methods
public String toString() {

return (firstName + " " + surname

+ " " + String.valueOf (

birthDate.get (Calendar.YEAR)

) + " " + String.valueOf (

birthDate.get (Calendar.MONTH)

) + " " + String.valueOf (

birthDate.get(Calendar.DAY_OF_MONTH)));

} // toString

} // Person

Usage of Objects
public class PersonMain {

public static void main (String[] args) {

Calendar bd1 = Calendar.getInstance();

bd1.set (1959, 04, 30);

Person p1 = new Person ("Smith",

"John", bd1);

System.out.println (p1);

Person p2 = new Person();

System.out.println (p2);

} // main

} // PersonMain

Collections

Collection
Set (set, unique elements)

HashSet

LinkedHashSet

SortedSet (ordered set, unique elements)

TreeSet
List (dynamic, indexed, multiple copies allowed)

ArrayList

LinkedList

Vector (legacy API, similar to ArrayList)
Queue (since Java 5, not discussed here)

Collections

Map ("key-value" pairs)
HashMap

LinkedHashMap
SortedMap

TreeMap
Hashtable (legacy API)
WeakHashMap (allow garbage collection)

Iterator (to find the next element)

Enumeration (legacy API, similar to Iterator)

Iterable (has iterator)
Collection

Collections

Comparable
which of two elements is "bigger"
public int compareTo (Object o)

/ -1, if o1 < o2
o1.compareTo (o2) =(0, if o1 == o2

\ 1, if o1 > o2

Arrays
static utilities – asList, search, sort, fill, ...

Collections
static utilities – search, sort, copy, fill, replace, min, max,

reverse, shuffle, ...

Java Command Line

Javac – compiler
javac Cunit.java

javac –cp classpath Cunit.java

javac my/package/Myclass.java

Java – interpreter
java Cunit any text you like to pass

java –cp classpath Cunit

java my/package/Myclass

java my.package.Myclass

Junit – www.junit.org

javac -cp .:junit-4.XX.jar ClassTest.java

java -cp .:junit-4.XX.jar org.junit.runner.JUnitCore ClassTest

Decrease complexity (use layers of abstraction,
interfaces, modularity, ...)

Reuse existing code, avoid duplication of code

Support formal contracting between independent
development teams

Detect errors as early as possible (general goal of
software engineering)

Motivation for Object Oriented
Programming

Motivation

Object oriented approach was introduced on 1980-s to
reduce complexity of programming large software
systems (e.g. graphical user interfaces).

Flat library of standard functions (common for early
imperative programming languages) is not flexible
enough to create complex software systems.

Powerful and well organized object oriented framework
makes programming easier – programmer re-uses
existing codebase and specifies only these
properties/functions she needs to elaborate/change (and
framework adjusts to these changes).

Object

Object is characterized by

• State (defined by values of instance variables in Java)

• Behaviour (defined by instance methods in Java)

• Identity (defined by memory location in Java)

Object = Instance = Specimen = ...

• Instance variable (Java terminology) = (Object) field
= Property = Attribute = ...

• Method = Subroutine = Function / Procedure = ...

Object

Encapsulation – data and operations on the data are
integrated into whole (object = capsule)

ADT approach – set of operations is a part of data type

Data hiding – object state can be changed only by
dedicated (usually public) methods - instance variables
should be protected from direct modification

Object is an instance of the class. E.g. „Rex is a dog“.

Class

Class defines common features of its objects („template“).
E.g. „All dogs have a name“.

Instantiation – creating a new object of the class.

Subclass can be derived from the class – subclass inherits
all the features of its parent class. Subclass allows to add
new (specific) features and redefine (=override) inherited
features. E.g. „Dog is (a special kind of) Animal“.

If A is a subclass of B then B is superclass of A.

Class Hierarchy

Generalization – common features of similar classes are
described on the level of superclass (mental process –
design the hierarchy of classes).

Specialization – subclass is created to concretize
(refine) certain general features and add specific
data/operations to the subclass (process of coding).

Instance Methods and Class Methods

Instance methods define the behaviour of an object
(=instance).
• s.length() - the length of string s in Java.

Class methods can be used without creating an
object (imperative style).
• Math.sqrt(2.) - square root of 2.

Keyword static in Java is used to define class

methods.

Polymorphism

Same notation has different meaning in different contexts

Two types of polymorphism:

Overloading – operation is redefined in subclass and is
binded to the activating message statically (compile
time choice).

Java constructors support overloading.

Overriding – operation is redefined in subclass and is
binded to the activating message dynamically (runtime
choice).

Java instance methods support overriding.

Examples

Pets.java

Phones.java

Num.java

Complex.java

Errors and Exceptions

Error handling without dedicated tools: return codes, global
error states etc.

Problem: it is not reasonable (or even possible) to handle
each unusual situation in the same place (subroutine) it
occurs. How to separate error handling from the normal
control flow?

Errors and Exceptions

In Java:

try / catch (control statement)

Throwable (specialized objects)
• Error (program cannot continue)
• Exception (unusual situation)

• RuntimeException (no obligation to catch)

throw (raise exception)

throws (method heading - delegating)

Errors
Error

LinkageError

ClassCircularityError

ClassFormatError

IncompatibleClassChangeError

NoSuchMethodError

NoSuchFieldError

InstantiationError

AbstractMethodError

IllegalAccessError

NoClassDefFoundError

VerifyError

AbstractMethodError

ExceptionInInitializationError

Errors

ThreadDeath

VirtualMachineError

InternalError

OutOfMemoryError

StackOverflowError

UnknownError

AWTError

Checked Exceptions

Exception

ClassNotFoundException

CloneNotSupportedException

IllegalAccessException

InstantiationException

InterruptedException

NoSuchMethodException

TooManyListenersException

ParseException

AWTException

IOException
IOException

CharConversionException

EOFException

FileNotFoundException

InterruptedIOException

ObjectStreamException

InvalidClassException

InvalidObjectException

NotActiveException

NotSerializableException

OptionalDataException

StreamCorruptedException

WriteAbortedException

IOException

SyncFailedException

UnsupportedEncodingException

UTFDataFormatException

MalformedURLException

ProtocolException

SocketException

BindException

ConnectException

NoRouteToHostException

UnknownHostException

UnknownServiceException

RuntimeException
RuntimeException

ArithmeticException

ArrayStoreException

ClassCastException

IllegalArgumentException

IllegalThreadStateException

NumberFormatException

FormatException

IllegalMonitorStateException

IllegalStateException

IndexOutOfBoundsException

ArrayIndexOutOfBoundsException

StringIndexOutOfBoundsException

RuntimeException

NegativeArraySizeException

NullPointerException

SecurityException

EmptyStackException

MissingResourceException

NoSuchElementException

IllegalComponentStateException

Try / Catch
try {

block where exceptions may occur;

}

catch (ExcType_1 variable) {

trap_1;

}

...

catch (ExcType_n variable) {

trap_n;

}

finally {

epilogue;

}

Example
try {

FileInputStream p = new FileInputStream ("/etc/passwd");

byte[] sisu = new byte [p.available()];

p.read (sisu);

p.close();

System.out.write (sisu);

} catch (FileNotFoundException e) {

System.out.println ("File not found " + e);

} catch (IOException e) {

System.out.println ("Input/Output error " + e);

} catch (Exception e) {

System.out.println ("Something unusual happened " + e);

} finally {

System.out.println (" This is finally branch");

} // try

Throw Statement

To raise an exception in your program

throw throwableObject;

Usually error message is provided

throw new SecurityException

("No permission to read!");

All checked (not RuntimeExceptions) exceptions need
handling – try/catch or delegation "up" using exception
declaration in method heading

Throws Declaration

public static void pause()

throws InterruptedException {

Thread.sleep (1000);

}

public Object nextElement()

throws java.util.NoSuchElementException {

if (pointerToNext() == null)

throw new

java.util.NoSuchElementException();

else

return pointerToNext();

}

Corresponding javadoc tag!

Problems

When extending existing exception class provide both
default constructor (with no parameters) and a
constructor with String parameter (error message).

No "resume" – use loop structures to continue execution

Declare needed variables before try-block, otherwise they
are not accessible in traps (catch branches)

Examples

Chaining – ExceptionUsage.java

Resume and other things – Apples.java

