Analysis of Algorithms

Algorithms

Words „algorithm" and „algebra" - Abu Ja'far Mohammed ibn Mûsâ al-Khowârizmî ca 825 AD, rules for performing arithmetic operations

Algorithm is an unambiguous (exact) instruction for solving a given task.
Algorithm consists of finite number of steps, each single step takes the final amount of time and final amount of other resources. Even so, an algorithm may not halt (terminate)!
Algorithm may have inputs (set of input data) and outputs (set of output data) algorithm is often considered to be a data processing function.
If an algorithm finishes its work (terminates) for all possible inputs, it is called total. If an algorithm may not terminate for some inputs, it is called partial.
If after each step the next step is uniquely defined, the algorithm is called deterministic, otherwise non-deterministic. Non-deterministic algorithm may give different outputs when executed on the same inputs.

Properties of Algorithms

Correctness (narrow) - algorithm meets the specification, solves the „right" task.
Correctness (wide) - algorithm is correct and safe (e.g. has „reasonable behaviour" for incorrect or undefined inputs).

Algorithm is well-defined, if all the steps are final and unambiguous. Description of an algorithm is always final - possibility to use algorithms as data (John von Neumann).

Halting property - total (always halts, solvable tasks) vs. partial (may not halt on some inputs, semi-solvable tasks).

Determinism - determined vs. non-determined
Universality - algorithm solves a class of problems, not only some single testcases.
Complexity - time complexity, memory (space) complexity. Average, worst case.

Formal Models of Algorithms

- Turing machine, 1936-37
- Lambda-calculus (Church), 1941
- Post systems, 1943
- Markov algorithms, 1951
- Chomsky 0-type grammars, 1959
- Programming languages, Sammet, 1969

Sammet (1969) - all these formal models express the same class of algorithms

Asymptotic Behaviour of Algorithms

n - size of input data

- Time complexity (average $A(n)$, worst case $W(n)$, best case)
$\mathrm{f}(\mathrm{n})>0$ - running time of an algorithm on input of size n
- Space complexity (average, worst case, best case)
$\mathrm{f}(\mathrm{n})>0$ - number of memory units needed to run an algorithm on input of size n
Direct measurement using implementation of an algorithm - not always reasonable
Estimation of growth counting „,meaningful" operations ($f(n)$ is a number of operations performed by an algorithm on input of size n)

Big-Oh

Given functions $\boldsymbol{f}(\boldsymbol{n})$ and $\boldsymbol{g}(\boldsymbol{n})$, we say that $\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$ if there are positive constants \boldsymbol{c} and \boldsymbol{n}_{0} such that $\boldsymbol{f}(\boldsymbol{n}) \leq \boldsymbol{c g}(\boldsymbol{n})$ for all $\boldsymbol{n} \geq \boldsymbol{n}_{0}$

The big-Oh notation gives an upper bound on the growth rate of a function
The statement " $\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n})$)" means that the growth rate of $\boldsymbol{f}(\boldsymbol{n})$ is no more than the growth rate of $\boldsymbol{g}(\boldsymbol{n})$
We can use the big-Oh notation to rank functions according to their growth rate

Figure 2.1 Graphic examples of the θ, O, and Ω notations. In cach part. the value of m_{0} shown is the minimum possible value; any greater value woutd also work. (a) Θ-notation bounds a function to within constant factors. We write $f(n)=\Theta(g(n))$ if there exise positive constants n_{n}, c_{1}, and s_{2} such that to the right of n_{0}, the value of $f\left(n:\right.$ always lies between $c_{i} g\left(n\right.$, and $c_{2} g(n)$ inclusive. (b) O-rotation gives an upper bound for a function to within a constant factor We write $f(n)=O(g i n j)$ if there are positive constants n_{r} and c such that to the right of n_{n}, the value of $f(n)$ always lies on or below cgin). (c) Ω-notation gives a lower bound for a function to within a constant factor. We write fint - Ω gint) if there are positive constants n_{i} and c such that to the righ: of n_{j}, the value of $f(n)$ always tics on or above ceint.

Big-Oh, Big-Omega, Big-Theta

$\mathrm{f} \sim \mathrm{O}(\mathrm{g})<=>\exists c>0, \exists n_{0}>0, \forall n>\boldsymbol{n}_{0}: \mathrm{f}(\mathrm{n}) / \mathrm{g}(\mathrm{n})<\mathrm{c}$
"f does not grow faster than g "
$\mathrm{f} \sim \Omega(\mathrm{g})<=>\mathrm{g} \sim \mathrm{O}(\mathrm{f})<=>\exists b>0, \exists n_{1}>0, \forall n>n_{1}: \mathrm{f}(\mathrm{n}) / \mathrm{g}(\mathrm{n})>\mathrm{b}$
„f does not grow slower than $\mathrm{g}^{\prime \prime}$

$$
\begin{aligned}
& f \sim \Theta(g) \ll f \sim O(g) \& f \sim \Omega(g) \ll> \\
&<=> \forall n>\max \left(\boldsymbol{n}_{0}, \boldsymbol{n}_{1}\right): b<f(n) / g(n)<c
\end{aligned}
$$

„f grows as fast as g"

Little-oh, little-omega

$$
\mathrm{f} \sim \mathrm{o}(\mathrm{~g})<=>\forall c>0: \exists n_{0}>0: \forall n>n_{0}: \frac{f(n)}{g(n)}<c
$$

„f grows (much) slower than ${ }^{\prime \prime}$

$$
\mathrm{f} \sim \omega(\mathrm{~g})<=>\mathrm{g} \sim \mathrm{o}(\mathrm{f})<=>\forall b>0: \exists n_{1}>0: \forall n>\boldsymbol{n}_{1}: \frac{f(n)}{g(n)}>b
$$

„f grows (much) faster than g^{\prime}

Asymptotic features of relations

for each constant $a>0: f(n) \sim O(a f(n))$
if $f(n)<g(n)$ and $g(n) \sim O(h(n))$, then $f(n) \sim O(h(n))$
if $f(n) \sim O(g(n))$ and $g(n) \sim O(h(n))$, then $f(n) \sim O(h(n))$
$\mathrm{f}(\mathrm{n})+\mathrm{g}(\mathrm{n}) \sim \mathrm{O}(\max \{\mathrm{f}(\mathrm{n}), \mathrm{g}(\mathrm{n})\})$
if $g(n) \sim O(h(n))$, then $f(n)+g(n) \sim O(f(n)+h(n))$
if $g(n) \sim O(h(n))$, then $f(n) g(n) \sim O(f(n) h(n))$
if $f(n)=p_{0}+p_{1} n+\ldots+p_{k} n^{k}$ is a polynomial of degree k, then $f(n) \sim O\left(n^{k}\right)$ for each natural number $k: \mathrm{n}^{\mathrm{k}} \sim \mathrm{o}\left(2^{\mathrm{n}}\right)$
for each natural number $k: \log n^{k}=k \log n \sim O(\log n)$
all logarithms are the same: $\log _{b} n=\log _{a} n / \log _{a} b$ and $a^{\log _{a} n}=n$

Classes of complexity and examples

 O(1) - searching the hash table $\mathrm{O}(\log \mathrm{n})$ - binary search O(sqrt(n)) - function inversion in quantum computing (Grover) $\mathrm{O}(\mathrm{n})$ - „common sense", naive pattern matching, special sort, ... O(nlogn) - fast sort with comparision $O\left(n^{2}\right)$ - naive sort, matrices$\mathrm{O}\left(\mathrm{n}^{2} \log n\right)$
$\mathrm{O}\left(\mathrm{n}^{3}\right)$ - Floyd-Warshall
$\ldots, O\left(n^{\mathrm{k}}\right) ; O\left(2^{\mathrm{n}}\right), O(\mathrm{n}!), O\left(\mathrm{n}^{\mathrm{n}}\right), O\left(2^{\wedge}\left(2^{\wedge}\left(2^{\wedge}(\ldots)\right)\right)\right) \mathrm{n}$ times, where ${ }^{\wedge}$ denotes exponent, ...

Infinite hierarhy of complexities

Rekursioon

Ackermann function:

$$
\begin{aligned}
& A(m, n)=A(m-1, A(m, n-1)) \text {, if } m>0 \text { and } n>0 \\
& A(0, n)=n+1 \\
& A(m, 0)=A(m-1,1) \text {, if } m>0
\end{aligned}
$$

Keerulisem näide - Ackermanni funktsioon: $\mathrm{A}(0, \mathrm{n})=\mathrm{n}+1$ $\mathrm{~A}(\mathrm{~m}, 0)=\mathrm{A}(\mathrm{m}-1,1)$ $\mathrm{A}(\mathrm{m}, \mathrm{n})=\mathrm{A}(\mathrm{m}-1, \mathrm{~A}(\mathrm{~m}, \mathrm{n}-1))$
0

Undecidable and hard problems

Halting problem is undecidable
Input: any algorithm in its finite representation and input data for that algorithm
Output: does the algorithm halt when executed on this data (yes/no)?
There is no general algorithm to solve this problem

Hard problem - no polynomial algorithm for the problem is known Example: Hamiltonian cycle in a graph

$$
\begin{aligned}
& f \sim \theta(g): \exists n_{1} \in \mathbb{N}, \exists c_{1} \in \mathbb{R} \\
& \forall n>n_{1}: f(n) \leqslant c_{1} g(n) \\
& g \sim \theta(h): \exists n_{2} \in \mathbb{N}, \exists c_{2} \in \mathbb{R}: \\
& \forall n>n_{2}: g(n) \leqslant c_{2} h(n) \\
& n_{3}:=\max \left(n_{1}, n_{2}\right) \\
& \forall n>n_{3}: f(n) \leqslant c_{1} g(n) \leqslant \\
& \leqslant c_{1} c_{2} h(n) \\
& c_{3}:=C_{1}: C_{2} \\
& \exists n_{3} \in \mathbb{N}, \exists C_{3} \in \mathbb{R}: \\
& \forall n>n_{3}: f(n) \leqslant C_{3} h(n) \\
& f
\end{aligned}
$$

Relative growth of running time

	Programbtit tö́ aeg $c f(n)$	Lahendami sumpeneqnit	sajo suhteline. ce $f(25) / f(5)$
	C_{3}		1
	$c_{2} \log n$		2
	$\mathrm{Cl}_{3} \mathrm{r}$		5
	$\mathrm{C}, 4 \mathrm{nlog} \mathrm{m}$		10
	$c_{5} \mathrm{n}^{2}$		25
	$\mathrm{cos} \mathrm{m}^{3}$		125
	$c_{7} 2^{7}$		1048576
Joonis 2.1. Lahendamisaja suhteline kasvamine, kui algandmete malit suuremels 5-It 25-le.			
Keertakus (mikrosek.)	Suarion tilesanne, frulle lahendamise aeg <1 sek.	Suurim tilesatitee, mille lahendomise aeg < t yüev	Suwrm tiesarne, midle lablaptidartase aeg <1 anstis
n	$n=1000000$	$n=86400000000$	$\mathrm{r}=31530000000000$
$n \log _{2} n$	$n=62 \% 46$	$n=2755147514$	rt - 798160978500
7^{2}	$\pi=1000$	$n=293938$	$\mathrm{r}=5615692$
ri^{3}	$n=100$	$n=4421$	$\pi-31393$
$2^{\text {r }}$	$n=19$	$\pi=36$	$n=44$
r!	$\pi=9$	$x=14$	$n=16$

Joonis 2.2. Erimeva keerukusega programmide ajalised piirid.

