

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n
- □ Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/ software environment

© 2014 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms

5

Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- □ Hides program design issues

© 2014 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

© 2014 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms

11

Counting Primitive Operations

 By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
/** Returns the maximum value of a nonempty array of numbers. */
   public static double arrayMax(double[] data) {
    int n = data.length;
                                           // assume first entry is biggest (for now)
     double currentMax = data[0];
5
     for (int j=1; j < n; j++)
                                           // consider all other entries
6
      if (data[j] > currentMax)
                                           // if data[j] is biggest thus far...
7
        currentMax = data[i];
                                           // record it as the current max
    return currentMax;
       □ Step 3: 2 ops, 4: 2 ops, 5: 2n ops,
           6: 2n ops, 7: 0 to n ops, 8: 1 op
```

Analysis of Algorithms

© 2014 Goodrich, Tamassia, Goldwasser

Estimating Running Time

- a Algorithm arrayMax executes 5n + 5 primitive operations in the worst case, 4n + 5 in the best case. Define:
 - a = Time taken by the fastest primitive operation
 - b = Time taken by the slowest primitive operation
- □ Let T(n) be worst-case time of arrayMax. Then $a(4n + 5) \le T(n) \le b(5n + 5)$
- \Box Hence, the running time T(n) is bounded by two linear functions

© 2014 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms

13

Growth Rate of Running Time

- Changing the hardware/ software environment
 - Affects T(n) by a constant factor, but
 - Does not alter the growth rate of T(n)
- □ The linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax

© 2014 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- □ The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

	f(n) is $O(g(n))$	g(n) is $O(f(n))$
g(n) grows more	Yes	No
f(n) grows more	No	Yes
Same growth	Yes	Yes

© 2014 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms

21

Big-Oh Rules

- □ If is f(n) a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - 1. Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

© 2014 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We say that algorithm $\frac{1}{2}$ when $\frac{1}{2}$ we say that algorithm $\frac{1}{2}$ when $\frac{1}{2}$ in $\frac{1}{2}$ when $\frac{1}{2}$ in $\frac{1}{2$
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

© 2014 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms

Prefix Averages 2 (Linear) The following algorithm uses a running summation to improve the efficiency /** Returns an array a such that, for all j, a[j] equals the average of x[0], ..., x[j]. */ public static double[] prefixAverage2(double[] x) { 3 **int** n = x.length; double[] a = new double[n]; // filled with zeros by default 5 **double** total = 0; // compute prefix sum as x[0] + x[1] + ...for (int j=0; j < n; j++) { 7 total += x[j]; // update prefix sum to include x[j] 8 a[j] = total / (j+1);// compute average based on current sum 9 10 return a; 11 } Algorithm prefixAverage2 runs in O(n) time! 27 © 2014 Goodrich, Tamassia, Goldwasser Analysis of Algorithms

Relatives of Big-Oh

big-Omega

• f(n) is $\Omega(g(n))$ if there is a constant c > 0and an integer constant $n_0 \ge 1$ such that $f(n) \ge c g(n)$ for $n \ge n_0$

big-Theta

f(n) is Θ(g(n)) if there are constants c' > 0 and c" > 0 and an integer constant n₀ ≥ 1 such that c'g(n) ≤ f(n) ≤ c"g(n) for n ≥ n₀

© 2014 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms

29

Intuition for Asymptotic Notation

big-Oh

 f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

big-Omega

• f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n)

big-Theta

f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)

© 2014 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms

Example Uses of the Relatives of Big-Oh

■ $5n^2$ is $\Omega(n^2)$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c$ g(n) for $n \ge n_0$

let c = 5 and $n_0 = 1$

 \blacksquare 5n² is $\Omega(n)$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c g(n)$ for $n \ge n_0$

let c = 1 and $n_0 = 1$

■ $5n^2$ is $\Theta(n^2)$

f(n) is $\Theta(g(n))$ if it is $\Omega(n^2)$ and $O(n^2)$. We have already seen the former, for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \le c g(n)$ for $n \ge n_0$

Let c = 5 and $n_0 = 1$

© 2014 Goodrich, Tamassia, Goldwasser

Analysis of Algorithms