Presentation for use with the textbook Data Structures and Algorithms in Java, $6^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Analysis of Algorithms

Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
- Easier to analyze

- Crucial to applications such as games, finance and robotics

Experimental

Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition, noting the time needed:
- Plot the results

long startTime $=$ System.currentTimeMillis();
// record the starting time
/* (run the algorithm) */
long endTime $=$ System.currentTimeMillis(); // record the ending time long elapsed $=$ endTime - startTime; // compute the elapsed time

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/ software environment

Pseudocode

- High-level description of an algorithm
\square More structured than English prose
- Less detailed than a program
\square Preferred notation for describing algorithms
- Hides program design issues

Pseudocode Details

- Control flow
- if ... then ... [else ...]
- while ... do ...
- repeat ... until ...
- for ... do ...
- Indentation replaces braces
- Method declaration

Algorithm method (arg [, arg...])
Input ...
Output ...

- Method call method (arg [, arg...])
- Return value
return expression
- Expressions:
\leftarrow Assignment
$=$ Equality testing
n^{2} Superscripts and other mathematical formatting allowed

The Random Access Machine (RAM) Model

A RAM consists of

- A CPU

- An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character
- Memory cells are numbered and
 accessing any cell in memory takes unit time

Seven Important Functions

- Seven functions that often appear in algorithm analysis:
- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear $\approx n$
- N -Log-N $\approx n \log n$
- Quadratic $\approx n^{2}$
- Cubic $\approx n^{3}$
- Exponential $\approx 2^{n}$
- In a log-log chart, the slope of the line corresponds to the growth rate

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model
- Examples:
- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Counting Primitive Operations

- By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size
/** Returns the maximum value of a nonempty array of numbers. */
public static double arrayMax(double[] data) \{
int $\mathrm{n}=$ data.length;
double currentMax = data[0]; // assume first entry is biggest (for now)
for (int $\mathrm{j}=1 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$) // consider all other entries
if (data[j] > currentMax) // if data[j] is biggest thus far... currentMax = data[j]; // record it as the current max return currentMax;
\}
Step 3: 2 ops, 4: 2 ops, 5: 2n ops,
6: 2 n ops, 7: 0 to n ops, 8: 1 op

Estimating Running Time

- Algorithm arrayMax executes $5 \boldsymbol{n}+5$ primitive operations in the worst case, $4 \boldsymbol{n}+5$ in the best case. Define:
$a=$ Time taken by the fastest primitive operation
$b=$ Time taken by the slowest primitive operation
- Let $\boldsymbol{T}(\boldsymbol{n})$ be worst-case time of arrayMax. Then

$$
a(4 n+5) \leq T(n) \leq b(5 n+5)
$$

- Hence, the running time $\boldsymbol{T}(\boldsymbol{n})$ is bounded by two linear functions

Growth Rate of Running Time

- Changing the hardware/ software environment
- Affects $T(n)$ by a constant factor, but
- Does not alter the growth rate of $T(n)$
- The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm arrayMax

Constant Factors

- The growth rate is not affected by
- constant factors or
- lower-order terms
- Examples
- $10^{2} \boldsymbol{n}+10^{5}$ is a linear function
- $10^{5} \boldsymbol{n}^{2}+10^{8} \boldsymbol{n}$ is a quadratic function

Big-Oh Notation

- Given functions $f(n)$ and $\boldsymbol{g}(\boldsymbol{n})$, we say that $f(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$ if there are positive constants c and n_{0} such that $f(n) \leq c g(n)$ for $n \geq n_{0}$
- Example: $2 \boldsymbol{n}+10$ is $\boldsymbol{O}(\boldsymbol{n})$
- $2 \boldsymbol{n}+10 \leq \boldsymbol{c n}$
- $(c-2) n \geq 10$
- $n \geq 10 /(c-2)$

- Pick $\boldsymbol{c}=3$ and $\boldsymbol{n}_{0}=10$

Big-Oh Example

- Example: the function
\boldsymbol{n}^{2} is not $\boldsymbol{O}(\boldsymbol{n})$
- $n^{2} \leq c n$
- $n \leq c$
- The above inequality cannot be satisfied since c must be a constant

More Big-Oh Examples

- $7 n-2$

$7 \mathrm{n}-2$ is $\mathrm{O}(\mathrm{n})$
need $\mathrm{c}>0$ and $\mathrm{n}_{0} \geq 1$ such that $7 \mathrm{n}-2 \leq \mathrm{c}$ for $\mathrm{n} \geq \mathrm{n}_{0}$ this is true for $\mathrm{c}=7$ and $\mathrm{n}_{0}=1$
- $3 n^{3}+20 n^{2}+5$
$3 n^{3}+20 n^{2}+5$ is $O\left(n^{3}\right)$
need $c>0$ and $n_{0} \geq 1$ such that $3 n^{3}+20 n^{2}+5 \leq c n^{3}$ for $n \geq n_{0}$ this is true for $\mathrm{c}=4$ and $\mathrm{n}_{0}=21$
- $3 \log n+5$
$3 \log n+5$ is $O(\log n)$
need $c>0$ and $n_{0} \geq 1$ such that $3 \log n+5 \leq c \log n$ for $n \geq n_{0}$ this is true for $\mathrm{c}=8$ and $\mathrm{n}_{0}=2$

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement " $f(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$ " means that the growth rate of $f(n)$ is no more than the growth rate of $\boldsymbol{g}(\boldsymbol{n})$
- We can use the big-Oh notation to rank functions according to their growth rate

	$\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$	$\boldsymbol{g}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{f}(\boldsymbol{n}))$
$\boldsymbol{g}(\boldsymbol{n})$ grows more	Yes	No
$\boldsymbol{f}(\boldsymbol{n})$ grows more	No	Yes
Same growth	Yes	Yes

Big-Oh Rules

- If is $f(n)$ a polynomial of degree d, then $f(\boldsymbol{n})$ is $\boldsymbol{O}\left(\boldsymbol{n}^{d}\right)$, i.e.,

1. Drop lower-order terms
2. Drop constant factors

- Use the smallest possible class of functions
- Say " $2 \boldsymbol{n}$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $2 \boldsymbol{n}$ is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ "
- Use the simplest expression of the class
- Say " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(3 \boldsymbol{n})$ "

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
- We find the worst-case number of primitive operations executed as a function of the input size
- We express this function with big-Oh notation
- Example:
- We say that algorithm arrayMax "runs in $\boldsymbol{O}(\boldsymbol{n})$ time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- The \boldsymbol{i}-th prefix average of an array \boldsymbol{X} is average of the first $(\boldsymbol{i}+1)$ elements of \boldsymbol{X} :

$$
\boldsymbol{A}[i]=(X[0]+X[1]+\ldots+X[i]) /(i+1)
$$

- Computing the array A of prefix averages of another array \boldsymbol{X} has applications to financial analysis

Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition
$/ * *$ Returns an array a such that, for all $\mathrm{j}, \mathrm{a}[\mathrm{j}]$ equals the average of $\times[0], \ldots, x[j] . * /$ public static double[] prefixAverage1(double[] x) \{
int $\mathrm{n}=\mathrm{x}$. length;
double[] a = new double[n]; // filled with zeros by default
for (int $\mathrm{j}=0$; $\mathrm{j}<\mathrm{n} ; \mathrm{j}++$) $\{$
double total $=0 ; \quad / /$ begin computing $\times[0]+\ldots+x[j]$
for (int $\mathrm{i}=0 ; \mathrm{i}<=\mathrm{j} ; \mathrm{i}++$)
total $+=x[i]$;
$a[j]=$ total $/(\mathrm{j}+1) ; \quad / /$ record the average
\}
return a;
\}

Arithmetic Progression

- The running time of prefixAverage1 is $\boldsymbol{O}(1+2+\ldots+\boldsymbol{n})$
- The sum of the first n integers is $\boldsymbol{n}(\boldsymbol{n}+1) / 2$
- There is a simple visual proof of this fact
- Thus, algorithm prefixAverage1 runs in $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ time

Prefix Averages 2 (Linear)

The following algorithm uses a running summation to improve the efficiency

```
/** Returns an array a such that, for all j, a[j] equals the average of }\textrm{x}[0],\ldots,\textrm{x}[\textrm{j}].*
public static double[ ] prefixAverage2(double[ ] x) {
    int n = x.length;
    double[] a = new double[n]; // filled with zeros by default
    double total = 0; // compute prefix sum as x[0] + x[1] + ...
    for(int j=0; j< n; j++) {
        total +=x[j]; // update prefix sum to include x[j]
        a[j] = total / (j+1); // compute average based on current sum
    }
    return a;
}
```

Algorithm prefixAverage2 runs in $\boldsymbol{O}(\boldsymbol{n})$ time!

Math you need to Review

- Summations
- Powers
- Logarithms
- Proof techniques
- Basic probability
- Properties of powers:
$a^{(b+c)}=a^{b} a^{c}$
$a^{b c}=\left(a^{b}\right)^{c}$
$a^{b} / a^{c}=a^{(b-c)}$
$b=a \log _{a} b$ $b^{c}=a^{c * \log _{a} b}$
- Properties of logarithms:

$$
\log _{b}(x y)=\log _{b} x+\log _{b} y
$$

$$
\log _{b}(x / y)=\log _{b} x-\log _{b} y
$$

$$
\log _{b} x a=a \log _{b} x
$$

$$
\log _{b} a=\log _{x} a / \log _{x} b
$$

Relatives of Big-Oh

big-Omega

- $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if there is a constant $\mathrm{c}>0$ and an integer constant $n_{0} \geq 1$ such that

$$
f(n) \geq c g(n) \text { for } n \geq n_{0}
$$

big-Theta

- $f(n)$ is $\Theta(g(n))$ if there are constants $c^{\prime}>0$ and $c^{\prime \prime}>0$ and an integer constant $n_{0} \geq 1$ such that

$$
c^{\prime} g(n) \leq f(n) \leq c^{\prime \prime} g(n) \text { for } n \geq n_{0}
$$

Intuition for Asymptotic Notation

big-Oh

- $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$
big-Omega
- $f(n)$ is $\Omega(g(n))$ if $f(n)$ is asymptotically greater than or equal to $g(n)$
big-Theta
- $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$

Example Uses of the Relatives of Big-Oh

- $5 n^{2}$ is $\Omega\left(n^{2}\right)$

$f(n)$ is $\Omega(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $f(n) \geq c g(n)$ for $n \geq n_{0}$
let $c=5$ and $n_{0}=1$
- $\mathbf{5} \boldsymbol{n}^{2}$ is $\Omega(n)$
$f(n)$ is $\Omega(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $\mathrm{f}(n) \geq c g(n)$ for $n \geq n_{0}$
let $c=1$ and $n_{0}=1$
- $\mathbf{5} \boldsymbol{n}^{2}$ is $\Theta\left(\boldsymbol{n}^{2}\right)$
$f(n)$ is $\Theta(g(n))$ if it is $\Omega\left(n^{2}\right)$ and $O\left(n^{2}\right)$. We have already seen the former,
for the latter recall that $f(n)$ is $O(g(n))$ if there is a constant $c>0$ and an
integer constant $n_{0} \geq 1$ such that $\mathrm{f}(n) \leq c g(n)$ for $n \geq n_{0}$
Let $c=5$ and $n_{0}=1$

