Presentation for use with the textbook Data Structures and Algorithms in Java, $6^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Recursion

The Recursion Pattern

- Recursion: when a method calls itself
- Classic example - the factorial function:
$n!=1 \cdot 2 \cdot 3 \cdot \cdots \cdot(n-1) \cdot n$
- Recursive definition:
- As a Java method:
$f(n)=\left\{\begin{array}{cc}1 & \text { if } n=0 \\ n \cdot f(n-1) & \text { else }\end{array}\right.$

```
    public static int factorial(int n) throws IllegalArgumentException {
    if ( }\textrm{n}<0
        throw new IllegalArgumentException(); // argument must be nonnegative
    else if ( }\textrm{n}==0\mathrm{ )
        return 1; // base case
    else
        return n * factorial(n-1); // recursive case
    }
```


Content of a Recursive Method

- Base case(s)
- Values of the input variables for which we perform no recursive calls are called base cases (there should be at least one base case).
- Every possible chain of recursive calls must eventually reach a base case.
- Recursive calls
- Calls to the current method.
- Each recursive call should be defined so that it makes progress towards a base case.

Visualizing Recursion

- Recursion trace
- Example
- A box for each recursive call
- An arrow from each caller to callee
- An arrow from each callee to caller showing return value

Example: English Ruler

- Print the ticks and numbers like an English ruler:

(c) 2014 Goodrich, Tamassia,

Recursive Drawing Method

- The drawing method is based on the following recursive definition
- An interval with a central tick length $\mathrm{L} \geq 1$ consists of:
- An interval with a central tick length L-1
- An single tick of length L
- An interval with a central tick length $\mathrm{L}-1$

A Recursive Method for Drawing Ticks on an English Ruler

```
/** Draws an English ruler for the given number of inches and major tick length. */
public static void drawRuler(int nlnches, int majorLength) {
drawLine(majorLength, 0);
    drawInterval(majorLength - 1); // draw interior ticks for inch
    drawLine(majorLength, j); // draw inch j line and label
}
private static void drawInterval(int centralLength) {
    if (centralLength >= 1) { // othe
    drawInterval(centralLength - 1); recursive calls
    drawLine(centralLength); #draw center tick line (without label)
    drawInterval(centralLength - 1); // recursively draw bottom interval
}
private static void drawLine(int tickLength, int tickLabel) {
    for (int j=0; j < tickLength; j++)
    System.out.print("-")
    if(tickLabel >=0)
    System.out.print(" " + tickLabel);
    System.out.print("\n");
}
/** Draws a line with the given tick length (but no label). */
private static void drawLine(int tickLength) {
    drawLine(tickLength, }-1\mathrm{ );
}

\section*{Binary Search}

Search for an integer in an ordered list
```

/**

* Returns true if the target value is found in the indicated portion of the data array.
* This search only considers the array portion from data[low] to data[high] inclusive
*/
public static boolean binarySearch(int[] data, int target, int low, int high) {
if (low > high)
return false; // interval empty; no match
else {
int mid = (low + high) / 2;
if (target == data[mid])
return true; // found a match
else if (target < data[mid])
return binarySearch(data, target, low, mid - 1); // recur left of the middle
else
return binarySearch(data, target, mid + 1, high); // recur right of the middle
}
}

```

\section*{Visualizing Binary Search}
- We consider three cases:
- If the target equals data[mid], then we have found the target.
- If target < data[mid], then we recur on the first half of the sequence.
- If target > data[mid], then we recur on the second half of the sequence.


\section*{Analyzing Binary Search}
a Runs in \(O(\log n)\) time.
- The remaining portion of the list is of size high - low + 1
- After one comparison, this becomes one of the following:
\[
\begin{gathered}
(\text { mid }-1)-\text { low }+1=\left\lfloor\frac{\text { low }+ \text { high }}{2}\right\rfloor-\text { low } \leq \frac{\text { high }- \text { low }+1}{2} \\
\text { high }-(\text { mid }+1)+1=\text { high }-\left\lfloor\frac{\text { low }+ \text { high }}{2}\right\rfloor \leq \frac{\text { high }- \text { low }+1}{2} .
\end{gathered}
\]
- Thus, each recursive call divides the search region in half; hence, there can be at most \(\log n\) levels

\section*{Linear Recursion}
- Test for base cases
- Begin by testing for a set of base cases (there should be at least one).
- Every possible chain of recursive calls must eventually reach a base case, and the handling of each base case should not use recursion.
- Recur once
- Perform a single recursive call
- This step may have a test that decides which of several possible recursive calls to make, but it should ultimately make just one of these calls
- Define each possible recursive call so that it makes progress towards a base case.

\section*{Example of Linear Recursion}


\section*{Reversing an Array}

Algorithm reverseArray(A, i, j):
Input: An array \(A\) and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at index i and ending at
\[
\begin{aligned}
\text { if } \mathrm{i}< & \mathrm{j} \text { then } \\
& \text { Swap } A[i] \text { and } A[j] \\
& \text { reverseArray }(A, i+1, j-1)
\end{aligned}
\]
return

\section*{Defining Arguments for Recursion}
- In creating recursive methods, it is important to define the methods in ways that facilitate recursion.
- This sometimes requires we define additional parameters that are passed to the method.
- For example, we defined the array reversal method as reverseArray(A, i, j), not reverseArray(A)
/** Reverses the contents of subarray data[low] through data[high] inclusive. */
public static void reverseArray(int[] data, int low, int high) \{
    if (low < high) \{ // if at least two elements in subarray
        int temp \(=\) data[low]; // swap data[low] and data[high]
        data[low] \(=\) data[high];
        data[high] = temp;
        reverseArray(data, low +1 , high -1 ); // recur on the rest
    \}
\}

\section*{Computing Powers}
- The power function, \(p(x, n)=x^{n}\), can be defined recursively:
\[
p(x, n)=\left\{\begin{array}{cc}
1 & \text { if } n=0 \\
x \cdot p(x, n-1) & \text { else }
\end{array}\right.
\]
- This leads to an power function that runs in \(\mathrm{O}(\mathrm{n})\) time (for we make n recursive calls)
- We can do better than this, however

\section*{Recursive Squaring}
- We can derive a more efficient linearly recursive algorithm by using repeated squaring:
\[
p(x, n)=\left\{\begin{array}{cc}
1 & \text { if } x=0 \\
x \cdot p(x,(n-1) / 2)^{2} & \text { if } x>0 \text { is odd } \\
p(x, n / 2)^{2} & \text { if } x>0 \text { is even }
\end{array}\right.
\]
- For example,
\(2^{4}=2^{(4 / 2) 2}=\left(2^{4 / 2}\right)^{2}=\left(2^{2}\right)^{2}=4^{2}=16\)
\(2^{5}=2^{1+(4 / 2) 2}=2\left(2^{4 / 2}\right)^{2}=2\left(2^{2}\right)^{2}=2\left(4^{2}\right)=32\)
\(2^{6}=2^{(6 / 2) 2}=\left(2^{6 / 2}\right)^{2}=\left(2^{3}\right)^{2}=8^{2}=64\)
\(2^{7}=2^{1+(6 / 2) 2}=2\left(2^{6 / 2}\right)^{2}=2\left(2^{3}\right)^{2}=2\left(8^{2}\right)=128\)

\section*{Recursive Squaring Method}

Algorithm \(\operatorname{Power}(\mathrm{x}, \mathrm{n})\) :
Input: A number x and integer \(\mathrm{n}=0\)
Output: The value \(x^{n}\)
if \(\mathrm{n}=0\) then
return 1
if \(n\) is odd then
\(y=\operatorname{Power}(x,(n-1) / 2)\)
return \(x\) • \(y\) ' \(y\)
else
\(y=\operatorname{Power}(x, n / 2)\)
return \(y\) • \(y\)

\section*{Analysis}

Algorithm Power( \(\mathrm{x}, \mathrm{n}\) ):
Input: A number \(x\) and integer \(\mathrm{n}=0\)

Output: The value \(x^{n}\) if \(n=0\) then
return 1
if \(n\) is odd then
\(y=\operatorname{Power}(x,(1-1) / 2)\)
else
\(y=\operatorname{Power}(x, n / 2)\)
return y \({ }^{\text {y }} \mathrm{y}\)

Each time we make a recursive call we halve the value of \(n\); hence, we make \(\log n\) recursive calls. That is, this method runs in \(O(\log n)\) time.

It is important that we use a variable twice here rather than calling the method twice.

\section*{Tail Recursion}
- Tail recursion occurs when a linearly recursive method makes its recursive call as its last step.
- The array reversal method is an example.
- Such methods can be easily converted to nonrecursive methods (which saves on some resources).
- Example:

Algorithm IterativeReverseArray(A, i, j ):
Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at index \(i\) and ending at \(j\)
while i < j do
Swap \(A[i]\) and \(A[j]\)
\(i=i+1\)
\(j=j-1\)
return

\section*{Binary Recursion}
a Binary recursion occurs whenever there are two recursive calls for each non-base case.
- Example from before: the drawInterval method for drawing ticks on an English ruler.


\section*{Another Binary Recusive Method}
- Problem: add all the numbers in an integer array A:

Algorithm BinarySum(A, i, n):
Input: An array \(A\) and integers \(i\) and \(n\)
Output: The sum of the n integers in A starting at index i if \(\mathrm{n}=1\) then return \(A[i]\) return BinarySum \((A, i, n / 2)+\operatorname{BinarySum}(A, i+n / 2, n / 2)\)
- Example trace:


\section*{Computing Fibonacci Numbers}
- Fibonacci numbers are defined recursively:
\[
F_{0}=0
\]
\(F_{1}=1\)
\(F_{i}=F_{i-1}{ }^{+} F_{i-2}\) for \(i>1\).
- Recursive algorithm (first attempt):

\section*{Algorithm BinaryFib( \(k\) ):}

Input: Nonnegative integer \(k\)
Output: The \(k\) th Fibonacci number \(F_{k}\)
if \(k=1\) then
return \(k\)
else
return \(\operatorname{BinaryFib}(k-1)+\operatorname{BinaryFib}(k-2)\)

\section*{Analysis}
- Let \(n_{k}\) be the number of recursive calls by BinaryFib(k)
- \(n_{0}=1\)
- \(n_{1}=1\)
- \(n_{2}=n_{1}+n_{0}+1=1+1+1=3\)
- \(n_{3}=n_{2}+n_{1}+1=3+1+1=5\)
- \(n_{4}=n_{3}+n_{2}+1=5+3+1=9\)
- \(n_{5}=n_{4}+n_{3}+1=9+5+1=15\)
- \(n_{6}=n_{5}+n_{4}+1=15+9+1=25\)
- \(n_{7}=n_{6}+n_{5}+1=25+15+1=41\)
- \(n_{8}=n_{7}+n_{6}+1=41+25+1=67\).
- Note that \(n_{k}\) at least doubles every other time
- That is, \(n_{k}>2^{k / 2}\). It is exponential!

\section*{A Better Fibonacci Algorithm}
- Use linear recursion instead

Algorithm LinearFibonacci(k):
Input: A nonnegative integer k
Output: Pair of Fibonacci numbers ( \(\mathrm{F}_{\mathrm{k}}, \mathrm{F}_{\mathrm{k}-1}\) )
if \(\mathrm{k}=1\) then
return (k, 0)
else
( \(\mathrm{i}, \mathrm{j}\) ) = LinearFibonacci( \(\mathrm{k}-1\) ) return ( \(\mathrm{i}+\mathrm{j}, \mathrm{i}\) )
- LinearFibonacci makes k -1 recursive calls

\section*{Multiple Recursion}
- Motivating example:
- summation puzzles
- pot + pan = bib
- dog + cat = pig
- boy + girl = baby
- Multiple recursion:
- makes potentially many recursive calls
- not just one or two

\section*{Algorithm for Multiple Recursion}

Algorithm PuzzleSolve(k,S,U):
Input: Integer \(k\), sequence S , and set U (universe of elements to test)
Output: Enumeration of all k-length extensions to \(S\) using elements in U without repetitions
for alle in \(U\) do
Remove \(e\) from \(U \quad\{e\) is now being used \(\}\)
Add e to the end of \(S\)
if \(k=1\) then
Test whether S is a configuration that solves the puzzle if \(S\) solves the puzzle then return "Solution found: " S
else
PuzzleSolve(k - 1, S,U)
Add \(e\) back to \(U \quad\{e\) is now unused\}
Remove e from the end of \(S\)

\section*{Example}


\section*{Visualizing PuzzleSolve}
```

