
Recursion 3/16/14

1

Recursion 1

Recursion

© 2014 Goodrich, Tamassia, Goldwasser

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

Recursion 2

The Recursion Pattern
q  Recursion: when a method calls itself
q  Classic example – the factorial function:

 n! = 1· 2· 3· ··· · (n-1)· n
q  Recursive definition:

q  As a Java method: ⎩

⎨
⎧

−⋅

=
=

elsenfn
n

nf
)1(

0 if1
)(

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 3/16/14

2

Recursion 3

Content of a Recursive Method
q  Base case(s)

n  Values of the input variables for which we perform
no recursive calls are called base cases (there
should be at least one base case).

n  Every possible chain of recursive calls must
eventually reach a base case.

q  Recursive calls
n  Calls to the current method.
n  Each recursive call should be defined so that it

makes progress towards a base case.

© 2014 Goodrich, Tamassia,
Goldwasser

Visualizing Recursion
q  Recursion trace

n  A box for each
recursive call

n  An arrow from each
caller to callee

n  An arrow from each
callee to caller
showing return value

q  Example

Recursion 4

recursiveFactorial (4)

recursiveFactorial (3)

recursiveFactorial (2)

recursiveFactorial (1)

recursiveFactorial (0)
return 1

call

call

call

call

return 1 * 1 = 1

return 2 * 1 = 2

return 3 * 2 = 6

return 4 * 6 = 24 final answer call

© 2014 Goodrich, Tamassia,
Goldwasser

Recursion 3/16/14

3

Recursion 5

Example: English Ruler
q  Print the ticks and numbers like an English ruler:

© 2014 Goodrich, Tamassia,
Goldwasser

6

Using Recursion
drawInterval(length)

Input: length of a ‘tick’
Output: ruler with tick of the given length in
the middle and smaller rulers on either side

Recursion © 2014 Goodrich, Tamassia, Goldwasser

drawInterval(length)

 if(length > 0) then

 drawInterval (length - 1)

 draw line of the given length

 drawInterval (length - 1)

Slide by Matt Stallmann
included with permission.

Recursion 3/16/14

4

Recursion 7

q  The drawing method
is based on the
following recursive
definition

q  An interval with a
central tick length
L >1 consists of:
n  An interval with a

central tick length L-1
n  An single tick of

length L
n  An interval with a

central tick length L-1

© 2014 Goodrich, Tamassia, Goldwasser

Recursive Drawing Method

Recursion 8

A Recursive Method for Drawing
Ticks on an English Ruler

Note the two
recursive calls

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 3/16/14

5

Binary Search
Search for an integer in an ordered list

© 2014 Goodrich, Tamassia, Goldwasser 9 Recursion

Visualizing Binary Search
q  We consider three cases:

n  If the target equals data[mid], then we have found the target.
n  If target < data[mid], then we recur on the first half of the

sequence.
n  If target > data[mid], then we recur on the second half of the

sequence.

© 2014 Goodrich, Tamassia, Goldwasser 10 Recursion

Recursion 3/16/14

6

Analyzing Binary Search
q  Runs in O(log n) time.

n  The remaining portion of the list is of size
high – low + 1

n  After one comparison, this becomes one of
the following:

n  Thus, each recursive call divides the search
region in half; hence, there can be at most
log n levels

© 2014 Goodrich, Tamassia, Goldwasser 11 Recursion

Recursion 12

Linear Recursion
q  Test for base cases

n  Begin by testing for a set of base cases (there should be
at least one).

n  Every possible chain of recursive calls must eventually
reach a base case, and the handling of each base case
should not use recursion.

q  Recur once
n  Perform a single recursive call
n  This step may have a test that decides which of several

possible recursive calls to make, but it should ultimately
make just one of these calls

n  Define each possible recursive call so that it makes
progress towards a base case.

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 3/16/14

7

Recursion 13

Example of Linear Recursion

© 2014 Goodrich, Tamassia, Goldwasser

Algorithm linearSum(A, n):
Input:
 Array, A, of integers
 Integer n such that

 0 ≤ n ≤ |A|
Output:

 Sum of the first n
integers in A

if n = 0 then
 return 0
else
 return
linearSum(A, n - 1) + A[n - 1]

Recursion trace of linearSum(data, 5)
called on array data = [4, 3, 6, 2, 8]

Recursion 14

Reversing an Array
Algorithm reverseArray(A, i, j):
Input: An array A and nonnegative integer

indices i and j
Output: The reversal of the elements in A

starting at index i and ending at

if i < j then

 Swap A[i] and A[j]
 reverseArray(A, i + 1, j - 1)

return

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 3/16/14

8

Recursion 15

Defining Arguments for Recursion
q  In creating recursive methods, it is important to define the

methods in ways that facilitate recursion.
q  This sometimes requires we define additional parameters

that are passed to the method.
q  For example, we defined the array reversal method as

reverseArray(A, i, j), not reverseArray(A)

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 16

Computing Powers

q  The power function, p(x,n)=xn, can be
defined recursively:

q  This leads to an power function that runs in
O(n) time (for we make n recursive calls)

q  We can do better than this, however

!
"
#

−⋅

=
=

else)1,(
0 if1

),(
nxpx

n
nxp

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 3/16/14

9

Recursion 17

Recursive Squaring
q  We can derive a more efficient linearly

recursive algorithm by using repeated squaring:

q  For example,
24	
= 2(4/2)2 = (24/2)2 = (22)2 = 42 = 16	

25	
= 21+(4/2)2 = 2(24/2)2 = 2(22)2 = 2(42) = 32
26	
= 2(6/ 2)2 = (26/2)2 = (23)2 = 82 = 64	

27	
= 21+(6/2)2 = 2(26/2)2 = 2(23)2 = 2(82) = 128

⎪
⎩

⎪
⎨

⎧

>

>

=

−⋅=

even is 0 if
odd is 0 if
0 if

)2/,(
)2/)1(,(

1
),(

2

2

x
x
x

nxp
nxpxnxp

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 18

Recursive Squaring Method

Algorithm Power(x, n):
 Input: A number x and integer n = 0
 Output: The value xn

 if n = 0 then
 return 1

 if n is odd then
 y = Power(x, (n - 1)/ 2)
 return x · y ·y

 else
 y = Power(x, n/ 2)
 return y · y

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 3/16/14

10

Recursion 19

Analysis

Algorithm Power(x, n):
 Input: A number x and

integer n = 0
 Output: The value xn

 if n = 0 then
 return 1

 if n is odd then
 y = Power(x, (n - 1)/ 2)
 return x · y · y

 else
 y = Power(x, n/ 2)
 return y · y

It is important that we
use a variable twice
here rather than calling
the method twice.

Each time we make a
recursive call we halve
the value of n; hence,
we make log n recursive
calls. That is, this
method runs in O(log n)
time.

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 20

Tail Recursion
q  Tail recursion occurs when a linearly recursive

method makes its recursive call as its last step.
q  The array reversal method is an example.
q  Such methods can be easily converted to non-

recursive methods (which saves on some resources).
q  Example:

Algorithm IterativeReverseArray(A, i, j):
 Input: An array A and nonnegative integer indices i and j
 Output: The reversal of the elements in A starting at index

i and ending at j
 while i < j do

 Swap A[i] and A[j]
 i = i + 1
 j = j - 1

 return

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 3/16/14

11

Recursion 21

Binary Recursion
q  Binary recursion occurs whenever there are two

recursive calls for each non-base case.
q  Example from before: the drawInterval method

for drawing ticks on an English ruler.

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 22

Another Binary Recusive Method
q  Problem: add all the numbers in an integer array A:

Algorithm BinarySum(A, i, n):
 Input: An array A and integers i and n
 Output: The sum of the n integers in A starting at index i
 if n = 1 then

 return A[i]
 return BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2)

q  Example trace:

3 , 1

2 , 2
0 , 4

2 , 1 1 , 1 0 , 1

0 , 8

0 , 2

7 , 1

6 , 2
4 , 4

6 , 1 5 , 1

4 , 2

4 , 1

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 3/16/14

12

Recursion 23

Computing Fibonacci Numbers
q  Fibonacci numbers are defined recursively:

F0 = 0	

F1 = 1	

Fi = Fi-1 + Fi-2 for i > 1.	

q  Recursive algorithm (first attempt):
Algorithm BinaryFib(k):	

 Input: Nonnegative integer k	

 Output: The kth Fibonacci number Fk	

 if k = 1 then	

	
 	
return k	

 else	

	
 	
return BinaryFib(k - 1) + BinaryFib(k - 2)

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 24

Analysis
q  Let nk be the number of recursive calls by BinaryFib(k)

n  n0 = 1
n  n1 = 1
n  n2 = n1 + n0 + 1 = 1 + 1 + 1 = 3
n  n3 = n2 + n1 + 1 = 3 + 1 + 1 = 5
n  n4 = n3 + n2 + 1 = 5 + 3 + 1 = 9
n  n5 = n4 + n3 + 1 = 9 + 5 + 1 = 15
n  n6 = n5 + n4 + 1 = 15 + 9 + 1 = 25
n  n7 = n6 + n5 + 1 = 25 + 15 + 1 = 41
n  n8 = n7 + n6 + 1 = 41 + 25 + 1 = 67.

q  Note that nk at least doubles every other time
q  That is, nk > 2k/2. It is exponential!

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 3/16/14

13

Recursion 25

A Better Fibonacci Algorithm
q  Use linear recursion instead

Algorithm LinearFibonacci(k):

 Input: A nonnegative integer k
 Output: Pair of Fibonacci numbers (Fk , Fk-1)
 if k = 1 then
 return (k, 0)

 else
 (i, j) = LinearFibonacci(k - 1)
 return (i +j, i)

q  LinearFibonacci makes k-1 recursive calls

© 2014 Goodrich, Tamassia, Goldwasser

Recursion 26

Multiple Recursion

q  Motivating example:
n  summation puzzles

w pot + pan = bib
w dog + cat = pig
w boy + girl = baby

q  Multiple recursion:
n  makes potentially many recursive calls
n  not just one or two

 © 2014 Goodrich, Tamassia, Goldwasser

Recursion 3/16/14

14

Recursion 27

Algorithm for Multiple Recursion
Algorithm PuzzleSolve(k,S,U):
 Input: Integer k, sequence S, and set U (universe of elements to

test)
 Output: Enumeration of all k-length extensions to S using elements

in U without repetitions
 for all e in U do

 Remove e from U {e is now being used}
 Add e to the end of S
 if k = 1 then
 Test whether S is a configuration that solves the puzzle
 if S solves the puzzle then
 return “Solution found: ” S
 else
 PuzzleSolve(k - 1, S,U)
 Add e back to U {e is now unused}
 Remove e from the end of S

 © 2014 Goodrich, Tamassia, Goldwasser

Example

© 2014 Goodrich, Tamassia, Goldwasser 28 Recursion

cbb + ba = abc a,b,c stand for 7,8,9; not
necessarily in that order

[] {a,b,c}

[a] {b,c}
a=7

[b] {a,c}
b=7

[c] {a,b}
c=7

[ab] {c}
a=7,b=8
c=9

[ac] {b}
a=7,c=8
b=9

[ba] {c}
b=7,a=8
c=9

[bc] {a}
b=7,c=8
a=9

[ca] {b}
c=7,a=8
b=9

[cb] {a}
c=7,b=8
a=9

might be able to
stop sooner

Slide by Matt Stallmann
included with permission.

799 + 98 = 997

Recursion 3/16/14

15

Recursion 29

Visualizing PuzzleSolve

PuzzleSolve (3 , () ,{ a , b , c })
Initial call

PuzzleSolve (2 , c ,{ a , b }) PuzzleSolve (2 , b ,{ a , c }) PuzzleSolve (2 , a ,{ b , c })

PuzzleSolve (1 , ab ,{ c })

PuzzleSolve (1 , ac ,{ b }) PuzzleSolve (1 , cb ,{ a })

PuzzleSolve (1 , ca ,{ b })

PuzzleSolve (1 , bc ,{ a })

PuzzleSolve (1 , ba ,{ c })
abc

acb

bac

bca

cab

cba

© 2014 Goodrich, Tamassia, Goldwasser

