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Recursion 
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Presentation for use with the textbook Data Structures and 
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, 
and M. H. Goldwasser, Wiley, 2014 

Recursion 2 

The Recursion Pattern 
q  Recursion: when a method calls itself 
q  Classic example – the factorial function:  

  n! = 1· 2· 3· ··· · (n-1)· n 
q  Recursive definition: 
 
q  As a Java method: ⎩
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Recursion 3 

Content of a Recursive Method 
q  Base case(s) 

n  Values of the input variables for which we perform 
no recursive calls are called base cases (there 
should be at least one base case).  

n  Every possible chain of recursive calls must 
eventually reach a base case. 

q  Recursive calls 
n  Calls to the current method.  
n  Each recursive call should be defined so that it 

makes progress towards a base case. 

© 2014 Goodrich, Tamassia, 
Goldwasser 

Visualizing Recursion 
q  Recursion trace 

n  A box for each 
recursive call 

n  An arrow from each 
caller to callee 

n  An arrow from each 
callee to caller 
showing return value 

q  Example 

Recursion 4 

recursiveFactorial ( 4 ) 

recursiveFactorial ( 3 ) 

recursiveFactorial ( 2 ) 

recursiveFactorial ( 1 ) 

recursiveFactorial ( 0 ) 
return  1 

call 

call 

call 

call 

return  1 * 1  =  1 

return  2 * 1  =  2 

return  3 * 2  =  6 

return  4 * 6  =  24 final answer call 
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Recursion 5 

Example: English Ruler 
q  Print the ticks and numbers like an English ruler: 

© 2014 Goodrich, Tamassia, 
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Using Recursion 
drawInterval(length) 

Input: length of a ‘tick’ 
Output: ruler with tick of the given length in 
the middle and smaller rulers on either side 

Recursion © 2014 Goodrich, Tamassia, Goldwasser 

drawInterval(length)  
 
  if( length > 0 ) then 
 
     drawInterval ( length - 1 ) 
 
     draw line of the given length 
 
     drawInterval ( length - 1 ) 
 

Slide by Matt Stallmann 
included with permission. 
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Recursion 7 

q  The drawing method 
is based on the 
following recursive 
definition 

q  An interval with a 
central tick length  
L >1 consists of: 
n  An interval with a 

central tick length L-1 
n  An single tick of 

length L 
n  An interval with a 

central tick length L-1 

© 2014 Goodrich, Tamassia, Goldwasser 

Recursive Drawing Method  

Recursion 8 

A Recursive Method for Drawing 
Ticks on an English Ruler 

Note the two 
recursive calls 
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Binary Search 
Search for an integer in an ordered list 

© 2014 Goodrich, Tamassia, Goldwasser 9 Recursion 

Visualizing Binary Search 
q  We consider three cases: 

n  If the target equals data[mid], then we have found the target. 
n  If target < data[mid], then we recur on the first half of the 

sequence. 
n  If target > data[mid], then we recur on the second half of the 

sequence. 

© 2014 Goodrich, Tamassia, Goldwasser 10 Recursion 



Recursion 3/16/14 

6 

Analyzing Binary Search 
q  Runs in O(log n) time. 

n  The remaining portion of the list is of size 
high – low + 1 

n  After one comparison, this becomes one of 
the following: 

n  Thus, each recursive call divides the search 
region in half; hence, there can be at most 
log n levels 
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Recursion 12 

Linear Recursion 
q  Test for base cases 

n  Begin by testing for a set of base cases (there should be 
at least one).  

n  Every possible chain of recursive calls must eventually 
reach a base case, and the handling of each base case 
should not use recursion. 

q  Recur once 
n  Perform a single recursive call 
n  This step may have a test that decides which of several 

possible recursive calls to make, but it should ultimately 
make just one of these calls 

n  Define each possible recursive call so that it makes 
progress towards a base case. 

© 2014 Goodrich, Tamassia, Goldwasser 
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Recursion 13 

Example of Linear Recursion 

© 2014 Goodrich, Tamassia, Goldwasser 

Algorithm linearSum(A, n): 
Input:  
  Array, A, of integers 
  Integer n such that 

 0 ≤ n ≤ |A| 
Output:  

 Sum of the first n  
integers in A 

 
if n = 0 then 
  return 0 
else 
  return  
linearSum(A, n - 1) + A[n - 1] 
 
 

Recursion trace of linearSum(data, 5) 
called on array data = [4, 3, 6, 2, 8] 

Recursion 14 

Reversing an Array 
Algorithm reverseArray(A, i,  j): 
Input: An array A and nonnegative integer 

indices i and  j 
Output: The reversal of the elements in A 

starting at index i and ending at   
 
if i <  j then 

  Swap A[i] and A[ j] 
  reverseArray(A, i + 1,  j - 1) 

return 

© 2014 Goodrich, Tamassia, Goldwasser 
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Recursion 15 

Defining Arguments for Recursion 
q  In creating recursive methods, it is important to define the 

methods in ways that facilitate recursion. 
q  This sometimes requires we define additional parameters 

that are passed to the method. 
q  For example, we defined the array reversal method as 

reverseArray(A, i,  j), not reverseArray(A) 

© 2014 Goodrich, Tamassia, Goldwasser 

Recursion 16 

Computing Powers 

q  The power function, p(x,n)=xn, can be 
defined recursively: 

q  This leads to an power function that runs in 
O(n) time (for we make n recursive calls) 

q  We can do better than this, however 
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Recursion 17 

Recursive Squaring 
q  We can derive a more efficient linearly 

recursive algorithm by using repeated squaring: 

 

q  For example, 
24	
=  2(4/2)2 = (24/2)2 = (22)2 = 42 = 16	

25	
=  21+(4/2)2 = 2(24/2)2 = 2(22)2 = 2(42) = 32 
26	
= 2(6/ 2)2 = (26/2)2 = (23)2 = 82 = 64	

27	
= 21+(6/2)2 = 2(26/2)2 = 2(23)2 = 2(82) = 128 
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Recursive Squaring Method 

Algorithm Power(x, n): 
      Input: A number x and integer n = 0 
      Output: The value xn 

     if n = 0  then 
  return 1 

     if n is odd then 
  y  = Power(x, (n - 1)/ 2) 
  return x · y ·y 

     else 
  y = Power(x, n/ 2) 
  return y · y 

© 2014 Goodrich, Tamassia, Goldwasser 
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Recursion 19 

Analysis 

Algorithm Power(x, n): 
      Input: A number x and 

integer n = 0 
      Output: The value xn 

     if n = 0  then 
  return 1 

     if n is odd then 
  y  = Power(x, (n - 1)/ 2) 
  return x · y · y 

     else 
  y = Power(x, n/ 2) 
  return y · y 

It is important that we 
use a variable twice 
here rather than calling 
the method twice. 

Each time we make a 
recursive call we halve 
the value of n; hence, 
we make log n recursive 
calls. That is, this 
method runs in O(log n) 
time. 

© 2014 Goodrich, Tamassia, Goldwasser 
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Tail Recursion 
q  Tail recursion occurs when a linearly recursive 

method makes its recursive call as its last step. 
q  The array reversal method is an example. 
q  Such methods can be easily converted to non-

recursive methods (which saves on some resources). 
q  Example: 

Algorithm IterativeReverseArray(A, i, j ): 
      Input: An array A and nonnegative integer indices i and j 
      Output: The reversal of the elements in A starting at index 

i and ending at j 
     while i <  j do 

 Swap A[i ] and A[ j ] 
 i  = i + 1 
 j  = j - 1 

     return 

© 2014 Goodrich, Tamassia, Goldwasser 
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Recursion 21 

Binary Recursion 
q  Binary recursion occurs whenever there are two 

recursive calls for each non-base case. 
q  Example from before: the drawInterval method 

for drawing ticks on an English ruler. 

© 2014 Goodrich, Tamassia, Goldwasser 

Recursion 22 

Another Binary Recusive Method 
q  Problem: add all the numbers in an integer array A: 

Algorithm BinarySum(A, i, n): 
      Input: An array A and integers i and n 
      Output: The sum of the n integers in A starting at index i 
     if n = 1 then 

 return A[i] 
     return BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2) 

q  Example trace: 

3 ,  1 

2 ,  2 
0 ,  4 

2 ,  1 1 ,  1 0 ,  1 

0 ,  8 

0 ,  2 

7 ,  1 

6 ,  2 
4 ,  4 

6 ,  1 5 ,  1 

4 ,  2 

4 ,  1 

© 2014 Goodrich, Tamassia, Goldwasser 
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Recursion 23 

Computing Fibonacci Numbers 
q  Fibonacci numbers are defined recursively: 

F0 =  0	

F1 =  1	

Fi =  Fi-1 + Fi-2     for i > 1.	


q  Recursive algorithm (first attempt): 
Algorithm BinaryFib(k):	

      Input: Nonnegative integer k	

      Output: The kth Fibonacci number Fk	

     if k = 1 then	

	
 	
return k	


     else	

	
 	
return BinaryFib(k - 1) + BinaryFib(k - 2) 

© 2014 Goodrich, Tamassia, Goldwasser 
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Analysis 
q  Let nk be the number of recursive calls by BinaryFib(k) 

n  n0 = 1   
n  n1 = 1   
n  n2 = n1 + n0 + 1 = 1 + 1 + 1 = 3  
n  n3 = n2 + n1 + 1 = 3 + 1 + 1 = 5  
n  n4 = n3 + n2 + 1 = 5 + 3 + 1 = 9  
n  n5 = n4 + n3 + 1 = 9 + 5 + 1 = 15   
n  n6 = n5 + n4 + 1 = 15 + 9 + 1 = 25   
n  n7 = n6 + n5 + 1 = 25 + 15 + 1 = 41   
n  n8 = n7 + n6 + 1 = 41 + 25 + 1 = 67. 

q  Note that nk at least doubles every other time 
q  That is, nk > 2k/2. It is exponential! 

© 2014 Goodrich, Tamassia, Goldwasser 
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Recursion 25 

A Better Fibonacci Algorithm  
q  Use linear recursion instead 

 
Algorithm LinearFibonacci(k): 

      Input: A nonnegative integer k 
      Output: Pair of Fibonacci numbers (Fk , Fk-1) 
     if k = 1 then 
  return (k, 0) 

     else 
  (i,  j)  =  LinearFibonacci(k - 1) 
  return (i +j, i) 
 

q   LinearFibonacci makes k-1 recursive calls 

© 2014 Goodrich, Tamassia, Goldwasser 
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Multiple Recursion 

q  Motivating example:  
n  summation puzzles 

w pot + pan = bib   
w dog + cat = pig   
w boy + girl = baby   

q  Multiple recursion:  
n  makes potentially many recursive calls 
n  not just one or two 

 © 2014 Goodrich, Tamassia, Goldwasser 
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Recursion 27 

Algorithm for Multiple Recursion 
Algorithm PuzzleSolve(k,S,U): 
 Input: Integer k, sequence S, and set U (universe of elements to 

test) 
 Output:  Enumeration of all k-length extensions to S using elements 

in U without repetitions 
 for all e  in U do 

 Remove e from U  {e is now being used} 
 Add e to the end of S 
 if k = 1 then 
  Test whether S is a configuration that solves the puzzle 
  if S solves the puzzle then 
   return “Solution found: ” S 
 else 
  PuzzleSolve(k - 1, S,U) 
 Add e back to U  {e is now unused} 
 Remove e from the end of S 

 © 2014 Goodrich, Tamassia, Goldwasser 

Example 
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cbb + ba = abc a,b,c stand for 7,8,9; not 
necessarily in that order 

[] {a,b,c} 

[a] {b,c} 
a=7 

[b] {a,c} 
b=7 

[c] {a,b} 
c=7 

[ab] {c} 
a=7,b=8 
c=9 

[ac] {b} 
a=7,c=8 
b=9 

[ba] {c} 
b=7,a=8 
c=9 

[bc] {a} 
b=7,c=8 
a=9 

[ca] {b} 
c=7,a=8 
b=9 

[cb] {a} 
c=7,b=8 
a=9 

might be able to 
stop sooner 

Slide by Matt Stallmann 
included with permission. 

799 + 98 = 997 
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Recursion 29 

Visualizing PuzzleSolve 

PuzzleSolve ( 3 , () ,{ a , b , c } ) 
Initial call 

PuzzleSolve ( 2 , c ,{ a , b } ) PuzzleSolve ( 2 , b ,{ a , c } ) PuzzleSolve ( 2 , a ,{ b , c } ) 

PuzzleSolve ( 1 , ab ,{ c } ) 

PuzzleSolve ( 1 , ac ,{ b } ) PuzzleSolve ( 1 , cb ,{ a } ) 

PuzzleSolve ( 1 , ca ,{ b } ) 

PuzzleSolve ( 1 , bc ,{ a } ) 

PuzzleSolve ( 1 , ba ,{ c } ) 
abc 

acb 

bac 

bca 

cab 

cba 
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