
Stacks 3/16/14

1

Stacks

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser 1 Stacks

Stacks 2

Abstract Data Types (ADTs)
q  An abstract data

type (ADT) is an
abstraction of a
data structure

q  An ADT specifies:
n  Data stored
n  Operations on the

data
n  Error conditions

associated with
operations

q  Example: ADT modeling a
simple stock trading system
n  The data stored are buy/sell

orders
n  The operations supported are

w  order buy(stock, shares, price)
w  order sell(stock, shares, price)
w  void cancel(order)

n  Error conditions:
w  Buy/sell a nonexistent stock
w  Cancel a nonexistent order

© 2014 Goodrich, Tamassia, Goldwasser

Stacks 3/16/14

2

Stacks 3

The Stack ADT
q  The Stack ADT stores

arbitrary objects
q  Insertions and deletions

follow the last-in first-out
scheme

q  Think of a spring-loaded
plate dispenser

q  Main stack operations:
n  push(object): inserts an

element
n  object pop(): removes and

returns the last inserted
element

q  Auxiliary stack
operations:
n  object top(): returns the

last inserted element
without removing it

n  integer size(): returns the
number of elements
stored

n  boolean isEmpty():
indicates whether no
elements are stored

© 2014 Goodrich, Tamassia, Goldwasser

Stacks 4

Stack Interface in Java
q  Java interface

corresponding to
our Stack ADT

q  Assumes null is
returned from
top() and pop()
when stack is
empty

q  Different from the
built-in Java class
java.util.Stack

public interface Stack<E> {

 int size();

 boolean isEmpty();

 E top();

 void push(E element);

 E pop();
}

© 2014 Goodrich, Tamassia, Goldwasser

Stacks 3/16/14

3

Stacks 5

Example

© 2014 Goodrich, Tamassia, Goldwasser

Stacks 6

Exceptions vs. Returning Null
q  Attempting the

execution of an
operation of an ADT
may sometimes cause
an error condition

q  Java supports a general
abstraction for errors,
called exception

q  An exception is said to
be “thrown” by an
operation that cannot
be properly executed

q  In our Stack ADT, we
do not use exceptions

q  Instead, we allow
operations pop and top
to be performed even
if the stack is empty

q  For an empty stack,
pop and top simply
return null

© 2014 Goodrich, Tamassia, Goldwasser

Stacks 3/16/14

4

Stacks 7

Applications of Stacks

q  Direct applications
n  Page-visited history in a Web browser
n  Undo sequence in a text editor
n  Chain of method calls in the Java Virtual

Machine
q  Indirect applications

n  Auxiliary data structure for algorithms
n  Component of other data structures

© 2014 Goodrich, Tamassia, Goldwasser

Stacks 8

Method Stack in the JVM
q  The Java Virtual Machine (JVM)

keeps track of the chain of
active methods with a stack

q  When a method is called, the
JVM pushes on the stack a
frame containing
n  Local variables and return value
n  Program counter, keeping track of

the statement being executed
q  When a method ends, its frame

is popped from the stack and
control is passed to the method
on top of the stack

q  Allows for recursion

main() {
 int i = 5;
 foo(i);
 }

foo(int j) {
 int k;
 k = j+1;
 bar(k);
 }

bar(int m) {
 …
 }

bar
 PC = 1
 m = 6

foo
 PC = 3
 j = 5
 k = 6

main
 PC = 2
 i = 5

© 2014 Goodrich, Tamassia, Goldwasser

Stacks 3/16/14

5

Stacks 9

Array-based Stack
q  A simple way of

implementing the
Stack ADT uses an
array

q  We add elements
from left to right

q  A variable keeps
track of the index of
the top element

S
0 1 2 t

…

Algorithm size()
 return t + 1

Algorithm pop()
 if isEmpty() then
 return null
 else
 t ← t - 1
 return S[t + 1]

© 2014 Goodrich, Tamassia, Goldwasser

Stacks 10

Array-based Stack (cont.)
q  The array storing the

stack elements may
become full

q  A push operation will
then throw a
FullStackException
n  Limitation of the array-

based implementation
n  Not intrinsic to the

Stack ADT

S
0 1 2 t

…

Algorithm push(o)
 if t = S.length - 1 then
 throw IllegalStateException
 else
 t ← t + 1
 S[t] ← o

© 2014 Goodrich, Tamassia, Goldwasser

Stacks 3/16/14

6

Stacks 11

Performance and Limitations
q  Performance

n  Let n be the number of elements in the stack
n  The space used is O(n)
n  Each operation runs in time O(1)

q  Limitations
n  The maximum size of the stack must be defined a

priori and cannot be changed
n  Trying to push a new element into a full stack

causes an implementation-specific exception

© 2014 Goodrich, Tamassia, Goldwasser

Stacks 12

Array-based Stack in Java
public class ArrayStack<E>

 implements Stack<E> {

 // holds the stack elements
 private E[] S;

 // index to top element
 private int top = -1;

 // constructor
 public ArrayStack(int capacity) {
 S = (E[]) new Object[capacity]);
 }

 public E pop() {
 if isEmpty()
 return null;
 E temp = S[top];
 // facilitate garbage collection:
 S[top] = null;
 top = top – 1;
 return temp;
 }

… (other methods of Stack interface)

© 2014 Goodrich, Tamassia, Goldwasser

Stacks 3/16/14

7

Stacks 13

Example Use in Java
public class Tester {

 // … other methods
 public intReverse(Integer a[]) {
 Stack<Integer> s;
 s = new

ArrayStack<Integer>();

 … (code to reverse array a) …
 }

 public floatReverse(Float f[]) {
 Stack<Float> s;
 s = new ArrayStack<Float>();

 … (code to reverse array f) …
 }

© 2014 Goodrich, Tamassia, Goldwasser

Stacks 14

Parentheses Matching

q  Each “(”, “{”, or “[” must be paired
with a matching “)”, “}”, or “[”
n  correct: ()(()){([()])}
n  correct: ((()(()){([()])}
n  incorrect:)(()){([()])}
n  incorrect: ({[])}
n  incorrect: (

© 2014 Goodrich, Tamassia, Goldwasser

Stacks 3/16/14

8

Parenthesis Matching (Java)
public static boolean isMatched(String expression) {
 final String opening = "({["; // opening delimiters
 final String closing = ")}]"; // respective closing delimiters
 Stack<Character> buffer = new LinkedStack<>();
 for (char c : expression.toCharArray()) {
 if (opening.indexOf(c) != −1) // this is a left delimiter
 buffer.push(c);
 else if (closing.indexOf(c) != −1) { // this is a right delimiter
 if (buffer.isEmpty()) // nothing to match with
 return false;
 if (closing.indexOf(c) != opening.indexOf(buffer.pop()))
 return false; // mismatched delimiter
 }
 }
 return buffer.isEmpty(); // were all opening delimiters matched?
}

© 2014 Goodrich, Tamassia, Goldwasser 15 Stacks

Stacks 16

HTML Tag Matching

<body>
<center>
<h1> The Little Boat </h1>
</center>
<p> The storm tossed the little
boat like a cheap sneaker in an
old washing machine. The three
drunken fishermen were used to
such treatment, of course, but
not the tree salesman, who even as
a stowaway now felt that he
had overpaid for the voyage. </p>

 Will the salesman die?
 What color is the boat?
 And what about Naomi?

</body>

The Little Boat

The storm tossed the little boat
like a cheap sneaker in an old
washing machine. The three
drunken fishermen were used to
such treatment, of course, but not
the tree salesman, who even as
a stowaway now felt that he had
overpaid for the voyage.

1. Will the salesman die?
2. What color is the boat?
3. And what about Naomi?

q  For fully-correct HTML, each <name> should pair with a matching </name>

© 2014 Goodrich, Tamassia, Goldwasser

Stacks 3/16/14

9

HTML Tag Matching (Java)
public static boolean isHTMLMatched(String html) {
 Stack<String> buffer = new LinkedStack<>();
 int j = html.indexOf('<'); // find first ’<’ character (if any)
 while (j != −1) {
 int k = html.indexOf('>', j+1); // find next ’>’ character
 if (k == −1)
 return false; // invalid tag
 String tag = html.substring(j+1, k); // strip away < >
 if (!tag.startsWith("/")) // this is an opening tag
 buffer.push(tag);
 else { // this is a closing tag
 if (buffer.isEmpty())
 return false; // no tag to match
 if (!tag.substring(1).equals(buffer.pop()))
 return false; // mismatched tag
 }
 j = html.indexOf('<', k+1); // find next ’<’ character (if any)
 }
 return buffer.isEmpty(); // were all opening tags matched?
}

© 2014 Goodrich, Tamassia, Goldwasser 17 Stacks

© 2014 Goodrich, Tamassia, Goldwasser Stacks 18

Evaluating Arithmetic
Expressions

14 – 3 * 2 + 7 = (14 – (3 * 2)) + 7
Operator precedence

 * has precedence over +/–

Associativity

 operators of the same precedence group
 evaluated from left to right
 Example: (x – y) + z rather than x – (y + z)

Idea: push each operator on the stack, but first pop and
perform higher and equal precedence operations.

Slide by Matt Stallmann
included with permission.

Stacks 3/16/14

10

Algorithm for
Evaluating Expressions

Two stacks:
q  opStk holds operators
q  valStk holds values
q  Use $ as special “end of input”

token with lowest precedence
Algorithm doOp()

x ← valStk.pop();"
y ← valStk.pop();"
op ← opStk.pop();"
valStk.push(y op x)

Algorithm repeatOps(refOp):

 while (valStk.size() > 1 ∧
 prec(refOp) ≤

 prec(opStk.top())
 doOp()

Algorithm EvalExp()
Input: a stream of tokens representing

an arithmetic expression (with
numbers)

Output: the value of the expression

while there’s another token z

 if isNumber(z) then
 valStk.push(z)

 else
 repeatOps(z);
 opStk.push(z)

repeatOps($);
return valStk.top()

© 2014 Goodrich, Tamassia, Goldwasser 19 Stacks

Slide by Matt Stallmann
included with permission.

© 2014 Goodrich, Tamassia, Goldwasser Stacks 20

Algorithm on an
Example Expression

14 ≤ 4 – 3 * 2 + 7
Operator ≤ has lower
precedence than +/–

–
≤ 14

4

* 3
–
≤ 14

4

2
* 3
–
≤ 14

4

+

2
* 3
–
≤ 14

4

+

6
–
≤ 14

4 +
≤ 14

-2

$

7
+
≤ 14

-2

$

F
$

≤ 14
5

Slide by Matt Stallmann
included with permission.

Stacks 3/16/14

11

Stacks 21

Computing Spans (not in book)
q  Using a stack as an auxiliary

data structure in an algorithm
q  Given an an array X, the span

S[i] of X[i] is the maximum
number of consecutive
elements X[j] immediately
preceding X[i] and such that
X[j] ≤ X[i]

q  Spans have applications to
financial analysis
n  E.g., stock at 52-week high 6 3 4 5 2

1 1 2 3 1
X
S

0
1
2
3
4
5
6
7

0 1 2 3 4

© 2014 Goodrich, Tamassia, Goldwasser

Stacks 22

Quadratic Algorithm
Algorithm spans1(X, n)

 Input array X of n integers
 Output array S of spans of X #
 S ← new array of n integers n
 for i ← 0 to n - 1 do n
 s ← 1 n
 while s ≤ i ∧ X[i - s] ≤ X[i] 1 + 2 + …+ (n - 1)
 s ← s + 1 1 + 2 + …+ (n - 1)
 S[i] ← s n
 return S 1

" Algorithm spans1 runs in O(n2) time
© 2014 Goodrich, Tamassia, Goldwasser

Stacks 3/16/14

12

Stacks 23

Computing Spans with a Stack
q  We keep in a stack the

indices of the elements
visible when “looking
back”

q  We scan the array from
left to right
n  Let i be the current index
n  We pop indices from the

stack until we find index j
such that X[i] < X[j]

n  We set S[i] ← i - j
n  We push x onto the stack

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

© 2014 Goodrich, Tamassia, Goldwasser

Stacks 24

Linear Time Algorithm
Algorithm spans2(X, n) #

 S ← new array of n integers n
 A ← new empty stack 1
 for i ← 0 to n - 1 do n
 while (¬A.isEmpty() ∧
 X[A.top()] ≤ X[i]) do n
 A.pop() n
 if A.isEmpty() then n
 S[i] ← i + 1 n
 else
 S[i] ← i - A.top() n
 A.push(i) n
 return S 1

q  Each index of the
array
q  Is pushed into the

stack exactly one
q  Is popped from

the stack at most
once

q  The statements in
the while-loop are
executed at most n
times

q  Algorithm spans2
runs in O(n) time

© 2014 Goodrich, Tamassia, Goldwasser

