Presentation for use with the textbook Data Structures and Algorithms in Java, $6^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Trees

\qquad

What is a Tree

- In computer science, a tree is an abstract model of a hierarchical structure
- A tree consists of nodes with a parent-child relation
- Applications:
- Organization charts
- File systems
- Programming environments

Tree Terminology

- Root: node without parent (A) a Subtree: tree consisting of
- Internal node: node with at least a node and its one child (A, B, C, F)
- External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)
- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Depth of a node: number of ancestors
- Height of a tree: maximum depth of any node (3)
- Descendant of a node: child, grandchild, grand-grandchild, etc.

Tree ADT

- We use positions to abstract nodes
- Generic methods:
- integer size()
- boolean isEmpty()
- Iterator iterator()
- Iterable positions()
- Accessor methods:
- position root()
- position parent(p)
- Iterable children(p)
- Integer numChildren(p)
- Query methods:
- boolean isInternal(p)
- boolean isExternal(p)
- boolean isRoot(p)
- Additional update methods may be defined by data structures implementing the Tree ADT

Java Interface
 Methods for a Tree interface:

```
/** An interface for a tree where nodes can have an arbitrary number of children. */
public interface Tree<E> extends Iterable<E> {
    Position<E> root();
    Position<E> parent(Position<E> p) throws IllegalArgumentException;
    Iterable<Position<E>> children(Position<E>p)
            throws IllegalArgumentException;
    int numChildren(Position<E> p) throws IllegalArgumentException;
    boolean isInternal(Position<E> p) throws IllegalArgumentException;
    boolean isExternal(Position<E> p) throws IllegalArgumentException;
    boolean isRoot(Position<E> p) throws IllegalArgumentException;
    int size();
    boolean isEmpty();
    Iterator<E}>\mathrm{ iterator();
    Iterable<Position<E}>>\mathrm{ positions();
}
```


Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

Postorder Traversal

Binary Trees

- A binary tree is a tree with the following properties:
- Each internal node has at most two children (exactly two for proper binary trees)
- The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
- a tree consisting of a single node, or
- a tree whose root has an ordered pair of children, each of which is a binary tree
- Applications:
- arithmetic expressions
- decision processes
- searching
A

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
- internal nodes: operators
- external nodes: operands
- Example: arithmetic expression tree for the expression $(2 \times(a-1)+(3 \times b))$

Decision Tree

- Binary tree associated with a decision process
- internal nodes: questions with yes/no answer
- external nodes: decisions
- Example: dining decision

Properties of Proper Binary Trees

- Notation
n number of nodes
\boldsymbol{e} number of external nodes
i number of internal nodes
\boldsymbol{h} height

- Properties:
- $\boldsymbol{e}=\boldsymbol{i}+1$
- $n=2 e-1$
- $h \leq i$
- $\boldsymbol{h} \leq(\boldsymbol{n}-1) / 2$
- $e \leq 2^{h}$
- $\boldsymbol{h} \geq \log _{2} \boldsymbol{e}$
- $\boldsymbol{h} \geq \log _{2}(\boldsymbol{n}+1)-1$

Trees 11

BinaryTree ADT

- The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
- Additional methods: a Update methods
- position left(p)
- position right(p)
- position sibling(p)
- The above methods return null when there is no left, right, or sibling of p, respectively may be defined by data structures implementing the BinaryTree ADT

Inorder Traversal

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
- $x(v)=$ inorder rank of v
- $y(v)=$ depth of v

```
Algorithm inOrder(v)
    if left \((v) \neq\) null
        inOrder (left (v))
    visit(v)
    if \(\operatorname{right}(\nu) \neq\) null
        inOrder (right (v))
```


Print Arithmetic Expressions

- Specialization of an inorder traversal
- print operand or operator when visiting node
- print "(" before traversing left subtree
- print ")" after traversing right subtree

Algorithm printExpression(v)
if left $(v) \neq$ null print("(') inOrder (left $(v))$ print(v.element ()) if $\operatorname{right}(\nu) \neq$ null inOrder $(\operatorname{right}(\nu))$ print (")'")
$((2 \times(a-1))+(3 \times b))$

Evaluate Arithmetic Expressions

- Specialization of a postorder traversal
- recursive method returning the value of a subtree
- when visiting an internal node, combine the values of the subtrees

Algorithm evalExpr(v)
if isExternal (v) return v.element ()
else
$x \leftarrow \operatorname{evalExpr}(\operatorname{left}(v))$
$y \leftarrow \operatorname{evalExpr}(\operatorname{right}(\nu))$
$\diamond \leftarrow$ operator stored at v return $x \diamond y$

Euler Tour Traversal

- Generic traversal of a binary tree
- Includes a special cases the preorder, postorder and inorder traversals
- Walk around the tree and visit each node three times:
- on the left (preorder)
- from below (inorder)
- on the right (postorder)

Linked Structure for Trees

- A node is represented by an object storing
- Element
- Parent node
- Sequence of children nodes
- Node objects implement the Position ADT

Trees
17

Linked Structure for Binary Trees

- A node is represented by an object storing
- Element
- Parent node
- Left child node
- Right child node
- Node objects implement the Position ADT

Array-Based Representation of Binary Trees

- Nodes are stored in an array A

A	B	D	\ldots	G	H	\ldots
0	1	2		9	10	

Node v is stored at $\mathrm{A}[\operatorname{rank}(\mathrm{v})]$

- rank(root) $=0$
- if node is the left child of parent(node),

