
Locators 3/25/14 15:06

1

Adaptable Priority Queues 1

Adaptable Priority
Queues

3 a

5 g 4 e

© 2014 Goodrich, Tamassia, Goldwasser

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

Adaptable Priority Queues 2

Entry and Priority Queue ADTs
q  An entry stores a (key,

value) pair
q  Entry ADT methods:

n  getKey(): returns the
key associated with this
entry

n  getValue(): returns the
value paired with the
key associated with this
entry

q  Priority Queue ADT:
n  insert(k, x)

inserts an entry with
key k and value x

n  removeMin()
removes and returns
the entry with
smallest key

n  min()
returns, but does not
remove, an entry
with smallest key

n  size(), isEmpty()
© 2014 Goodrich, Tamassia, Goldwasser

Locators 3/25/14 15:06

2

Adaptable Priority Queues 3

Example
q  Online trading system where orders to purchase and

sell a stock are stored in two priority queues (one for
sell orders and one for buy orders) as (p,s) entries:
n  The key, p, of an order is the price
n  The value, s, for an entry is the number of shares
n  A buy order (p,s) is executed when a sell order (p’,s’) with

price p’<p is added (the execution is complete if s’>s)
n  A sell order (p,s) is executed when a buy order (p’,s’) with

price p’>p is added (the execution is complete if s’>s)

q  What if someone wishes to cancel their order before
it executes?

q  What if someone wishes to update the price or
number of shares for their order?

© 2014 Goodrich, Tamassia, Goldwasser

Adaptable Priority Queues 4

Methods of the Adaptable Priority
Queue ADT
q  remove(e): Remove from P and return

entry e.
q  replaceKey(e,k): Replace with k and

return the key of entry e of P; an error
condition occurs if k is invalid (that is, k
cannot be compared with other keys).

q  replaceValue(e,v): Replace with v and
return the value of entry e of P.

© 2014 Goodrich, Tamassia, Goldwasser

Locators 3/25/14 15:06

3

Adaptable Priority Queues 5

Example
Operation 	
 	
 	
Output 	
 	
P 	
	

insert(5,A) e1 	
 	
(5,A)
insert(3,B) e2 	
 	
(3,B),(5,A)
insert(7,C) e3 	
 	
(3,B),(5,A),(7,C)
min() e2 	
 	
(3,B),(5,A),(7,C)
key(e2) 3 	
 	
(3,B),(5,A),(7,C)
remove(e1) e1 	
 	
(3,B),(7,C)
replaceKey(e2,9) 3 	
 	
(7,C),(9,B)
replaceValue(e3,D) C 	
 	
(7,D),(9,B)
remove(e2) e2 	
 	
(7,D)

© 2014 Goodrich, Tamassia, Goldwasser

Adaptable Priority Queues 6

Locating Entries
q  In order to implement the operations

remove(e), replaceKey(e,k), and
replaceValue(e,v), we need fast ways of
locating an entry e in a priority queue.

q  We can always just search the entire
data structure to find an entry e, but
there are better ways for locating
entries.

© 2014 Goodrich, Tamassia, Goldwasser

Locators 3/25/14 15:06

4

Adaptable Priority Queues 7

Location-Aware Entries
q  A location-aware entry identifies and tracks

the location of its (key, value) object within a
data structure

q  Intuitive notion:
n  Coat claim check
n  Valet claim ticket
n  Reservation number

q  Main idea:
n  Since entries are created and returned from the

data structure itself, it can return location-aware
entries, thereby making future updates easier

© 2014 Goodrich, Tamassia, Goldwasser

Adaptable Priority Queues 8

List Implementation
q  A location-aware list entry is an object storing

n  key
n  value
n  position (or rank) of the item in the list

q  In turn, the position (or array cell) stores the entry
q  Back pointers (or ranks) are updated during swaps

trailer header nodes/positions

entries

2 c 4 c 5 c 8 c

© 2014 Goodrich, Tamassia, Goldwasser

Locators 3/25/14 15:06

5

Adaptable Priority Queues 9

Heap Implementation
q  A location-aware heap

entry is an object
storing
n  key
n  value

n  position of the entry in
the underlying heap

q  In turn, each heap
position stores an entry

q  Back pointers are
updated during entry
swaps

4 a

2 d

6 b

8 g 5 e 9 c

© 2014 Goodrich, Tamassia, Goldwasser

Adaptable Priority Queues 10

Performance
q  Improved times thanks to location-aware

entries are highlighted in red
Method Unsorted List Sorted List Heap
size, isEmpty O(1) O(1) O(1)
insert O(1) O(n) O(log n)
min O(n) O(1) O(1)
removeMin O(n) O(1) O(log n)
remove O(1) O(1) O(log n)
replaceKey O(1) O(n) O(log n)
replaceValue O(1) O(1) O(1)

© 2014 Goodrich, Tamassia, Goldwasser

Locators 3/25/14 15:06

6

Java Implementation

© 2014 Goodrich, Tamassia, Goldwasser Adaptable Priority Queues 11

Java Implementation, 2

© 2014 Goodrich, Tamassia, Goldwasser Adaptable Priority Queues 12

Locators 3/25/14 15:06

7

Java Implementation, 3

© 2014 Goodrich, Tamassia, Goldwasser Adaptable Priority Queues 13

Java Implementation, 4

© 2014 Goodrich, Tamassia, Goldwasser Adaptable Priority Queues 14

