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Priority Queue ADT 
q  A priority queue stores a 

collection of entries 
q  Each entry is a pair 

(key, value) 
q  Main methods of the Priority 

Queue ADT 
n  insert(k, v) 

inserts an entry with key k 
and value v 

n  removeMin() 
removes and returns the 
entry with smallest key, or 
null if the the priority queue 
is empty 

q  Additional methods 
n  min() 

returns, but does not 
remove, an entry with 
smallest key, or null if the 
the priority queue is empty 

n  size(), isEmpty() 

q  Applications: 
n  Standby flyers 
n  Auctions 
n  Stock market 
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Example 

q  A sequence of priority queue methods: 

© 2014 Goodrich, Tamassia, Goldwasser 3 Priority Queues 

Priority Queues 4 

Total Order Relations 

q  Keys in a priority 
queue can be 
arbitrary objects 
on which an order 
is defined 

q  Two distinct 
entries in a 
priority queue can 
have the same 
key 

q  Mathematical concept 
of total order relation ≤ 
n  Comparability property: 

either x ≤ y or y ≤ x 
n  Antisymmetric property: 

x ≤ y and y ≤ x ⇒ x = y 
n  Transitive property: 

 x ≤ y and y ≤ z ⇒ x ≤ z 
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Entry ADT 
q  An entry in a priority 

queue is simply a key-
value pair 

q  Priority queues store 
entries to allow for 
efficient insertion and 
removal based on keys 

q  Methods: 
n  getKey: returns the key 

for this entry 
n  getValue: returns the 

value associated with this 
entry 

q  As a Java interface: 
/**  
  * Interface for a key-value 
  * pair entry  
 **/ 
public interface  Entry<K,V>  

{ 
    K getKey(); 
    V getValue(); 
 } 
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Comparator ADT 
q  A comparator encapsulates 

the action of comparing two 
objects according to a given 
total order relation 

q  A generic priority queue 
uses an auxiliary 
comparator 

q  The comparator is external 
to the keys being compared 

q  When the priority queue 
needs to compare two keys, 
it uses its comparator 

q  Primary method of the 
Comparator ADT 

q  compare(x, y): returns an 
integer i such that  
n  i < 0 if a < b, 
n  i = 0 if a = b 
n  i > 0 if a > b 
n  An error occurs if a and b 

cannot be compared. 
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Example Comparator 
q  Lexicographic comparison of 2-D 

points: 
/** Comparator for 2D points under the 

standard lexicographic order. */ 
public class  Lexicographic  implements  

Comparator  { 
    int  xa, ya, xb, yb; 
    public int  compare(Object a, Object b)  

throws  ClassCastException  { 
       xa = ((Point2D) a).getX(); 
       ya = ((Point2D) a).getY(); 
       xb = ((Point2D) b).getX(); 
       yb = ((Point2D) b).getY(); 
       if  (xa != xb) 

  return  (xb - xa); 
       else 

  return  (yb - ya); 
   } 
} 

q  Point objects: 
 
/** Class representing a point in the 

plane with integer coordinates */ 
public class  Point2D  { 
    protected int xc, yc; // coordinates 
    public  Point2D(int  x,  int  y)  { 
       xc = x; 
       yc = y; 
   } 
    public int  getX()  {  

  return  xc;   
    } 
    public int  getY()  {  

  return  yc;   
    } 
} 
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Sequence-based Priority Queue 
q  Implementation with an 

unsorted list 
 
q  Performance: 

n  insert takes O(1) time 
since we can insert the 
item at the beginning or 
end of the sequence 

n  removeMin and min take 
O(n) time since we have 
to traverse the entire 
sequence to find the 
smallest key  

q  Implementation with a 
sorted list 

 
q  Performance: 

n  insert takes O(n) time 
since we have to find the 
place where to insert the 
item 

n  removeMin and min take 
O(1) time, since the 
smallest key is at the 
beginning 

4 5 2 3 1 1 2 3 4 5 

© 2014 Goodrich, Tamassia, Goldwasser 



Priority Queues 3/19/14 

5 

Unsorted List Implementation 
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Unsorted List Implementation, 2 
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Sorted List Implementation 
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Sorted List Implementation, 2 
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Priority Queue Sorting 
q  We can use a priority 

queue to sort a list of 
comparable elements 
1.  Insert the elements one 

by one with a series of 
insert operations 

2.  Remove the elements in 
sorted order with a series 
of removeMin operations 

q  The running time of this 
sorting method depends on 
the priority queue 
implementation 

Algorithm PQ-Sort(S, C) 
Input list S, comparator C for the 
elements of S 
Output list S sorted  in increasing 
order according to C 
P ← priority queue with  

 comparator C 
while ¬S.isEmpty () 

 e ← S.remove(S.first ()) 
P.insert (e, ∅) 

while ¬P.isEmpty() 
 e ← P.removeMin().getKey() 
S.addLast(e) 
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Selection-Sort 

q  Selection-sort is the variation of PQ-sort where the 
priority queue is implemented with an unsorted 
sequence 

q  Running time of Selection-sort: 
1.  Inserting the elements into the priority queue with n insert 

operations takes O(n) time 
2.  Removing the elements in sorted order from the priority 

queue with n removeMin operations takes time 
proportional to 
    1 + 2 + …+ n 

q  Selection-sort runs in O(n2) time  
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Selection-Sort Example 
                        Sequence S   Priority Queue P   
Input:   (7,4,8,2,5,3,9)   ()   
 
Phase 1   

 (a)   (4,8,2,5,3,9)   (7)   
 (b)   (8,2,5,3,9)   (7,4)   
 ..   ..  ..   
 (g)   ()    (7,4,8,2,5,3,9)   

 
Phase 2   

 (a)   (2)    (7,4,8,5,3,9)   
 (b)   (2,3)    (7,4,8,5,9)   
 (c)   (2,3,4)    (7,8,5,9)  
 (d)   (2,3,4,5)   (7,8,9)   
 (e)   (2,3,4,5,7)   (8,9)   
 (f)   (2,3,4,5,7,8)   (9)   
 (g)   (2,3,4,5,7,8,9)   () 
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Insertion-Sort 
q  Insertion-sort is the variation of PQ-sort where the 

priority queue is implemented with a sorted 
sequence 

q  Running time of Insertion-sort: 
1.  Inserting the elements into the priority queue with n 

insert operations takes time proportional to 

1 + 2 + …+ n 
2.  Removing the elements in sorted order from the priority 

queue with  a series of n removeMin operations takes 
O(n) time 

q  Insertion-sort runs in O(n2) time  

© 2014 Goodrich, Tamassia, Goldwasser 



Priority Queues 3/19/14 

9 

Priority Queues 17 

Insertion-Sort Example 
   Sequence S  Priority queue P   

Input:   (7,4,8,2,5,3,9)   ()   
 
Phase 1   
     (a)   (4,8,2,5,3,9)   (7)   

 (b)   (8,2,5,3,9)   (4,7)   
 (c)   (2,5,3,9)   (4,7,8)   
 (d)   (5,3,9)    (2,4,7,8)  
 (e)   (3,9)    (2,4,5,7,8)   
 (f)   (9)    (2,3,4,5,7,8)   
 (g)   ()    (2,3,4,5,7,8,9)   

 
Phase 2   

 (a)   (2)    (3,4,5,7,8,9)   
 (b)   (2,3)    (4,5,7,8,9)   
 ..   ..    ..   
 (g)   (2,3,4,5,7,8,9)   () 
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In-place Insertion-Sort 
q  Instead of using an 

external data structure, 
we can implement 
selection-sort and 
insertion-sort in-place 

q  A portion of the input 
sequence itself serves as 
the priority queue 

q  For in-place insertion-sort 
n  We keep sorted the initial 

portion of the sequence 
n  We can use swaps 

instead of modifying the 
sequence 

5 4 2 3 1 

5 4 2 3 1 
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2 4 5 3 1 

2 3 4 5 1 

1 2 3 4 5 

1 2 3 4 5 
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