
Priority Queues 3/19/14

1

Priority Queues 1

Priority Queues

© 2014 Goodrich, Tamassia, Goldwasser

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

Priority Queues 2

Priority Queue ADT
q  A priority queue stores a

collection of entries
q  Each entry is a pair

(key, value)
q  Main methods of the Priority

Queue ADT
n  insert(k, v)

inserts an entry with key k
and value v

n  removeMin()
removes and returns the
entry with smallest key, or
null if the the priority queue
is empty

q  Additional methods
n  min()

returns, but does not
remove, an entry with
smallest key, or null if the
the priority queue is empty

n  size(), isEmpty()

q  Applications:
n  Standby flyers
n  Auctions
n  Stock market

© 2014 Goodrich, Tamassia, Goldwasser

Priority Queues 3/19/14

2

Example

q  A sequence of priority queue methods:

© 2014 Goodrich, Tamassia, Goldwasser 3 Priority Queues

Priority Queues 4

Total Order Relations

q  Keys in a priority
queue can be
arbitrary objects
on which an order
is defined

q  Two distinct
entries in a
priority queue can
have the same
key

q  Mathematical concept
of total order relation ≤
n  Comparability property:

either x ≤ y or y ≤ x
n  Antisymmetric property:

x ≤ y and y ≤ x ⇒ x = y
n  Transitive property:

 x ≤ y and y ≤ z ⇒ x ≤ z

© 2014 Goodrich, Tamassia, Goldwasser

Priority Queues 3/19/14

3

Priority Queues 5

Entry ADT
q  An entry in a priority

queue is simply a key-
value pair

q  Priority queues store
entries to allow for
efficient insertion and
removal based on keys

q  Methods:
n  getKey: returns the key

for this entry
n  getValue: returns the

value associated with this
entry

q  As a Java interface:
/**
 * Interface for a key-value
 * pair entry
 **/
public interface Entry<K,V>

{
 K getKey();
 V getValue();
 }

© 2014 Goodrich, Tamassia, Goldwasser

Priority Queues 6

Comparator ADT
q  A comparator encapsulates

the action of comparing two
objects according to a given
total order relation

q  A generic priority queue
uses an auxiliary
comparator

q  The comparator is external
to the keys being compared

q  When the priority queue
needs to compare two keys,
it uses its comparator

q  Primary method of the
Comparator ADT

q  compare(x, y): returns an
integer i such that
n  i < 0 if a < b,
n  i = 0 if a = b
n  i > 0 if a > b
n  An error occurs if a and b

cannot be compared.

© 2014 Goodrich, Tamassia, Goldwasser

Priority Queues 3/19/14

4

Priority Queues 7

Example Comparator
q  Lexicographic comparison of 2-D

points:
/** Comparator for 2D points under the

standard lexicographic order. */
public class Lexicographic implements

Comparator {
 int xa, ya, xb, yb;
 public int compare(Object a, Object b)

throws ClassCastException {
 xa = ((Point2D) a).getX();
 ya = ((Point2D) a).getY();
 xb = ((Point2D) b).getX();
 yb = ((Point2D) b).getY();
 if (xa != xb)

 return (xb - xa);
 else

 return (yb - ya);
 }
}

q  Point objects:

/** Class representing a point in the

plane with integer coordinates */
public class Point2D {
 protected int xc, yc; // coordinates
 public Point2D(int x, int y) {
 xc = x;
 yc = y;
 }
 public int getX() {

 return xc;
 }
 public int getY() {

 return yc;
 }
}

© 2014 Goodrich, Tamassia, Goldwasser

Priority Queues 8

Sequence-based Priority Queue
q  Implementation with an

unsorted list

q  Performance:

n  insert takes O(1) time
since we can insert the
item at the beginning or
end of the sequence

n  removeMin and min take
O(n) time since we have
to traverse the entire
sequence to find the
smallest key

q  Implementation with a
sorted list

q  Performance:

n  insert takes O(n) time
since we have to find the
place where to insert the
item

n  removeMin and min take
O(1) time, since the
smallest key is at the
beginning

4 5 2 3 1 1 2 3 4 5

© 2014 Goodrich, Tamassia, Goldwasser

Priority Queues 3/19/14

5

Unsorted List Implementation

© 2014 Goodrich, Tamassia, Goldwasser 9 Priority Queues

Unsorted List Implementation, 2

© 2014 Goodrich, Tamassia, Goldwasser 10 Priority Queues

Priority Queues 3/19/14

6

Sorted List Implementation

© 2014 Goodrich, Tamassia, Goldwasser 11 Priority Queues

Sorted List Implementation, 2

© 2014 Goodrich, Tamassia, Goldwasser 12 Priority Queues

Priority Queues 3/19/14

7

Priority Queues 13

Priority Queue Sorting
q  We can use a priority

queue to sort a list of
comparable elements
1.  Insert the elements one

by one with a series of
insert operations

2.  Remove the elements in
sorted order with a series
of removeMin operations

q  The running time of this
sorting method depends on
the priority queue
implementation

Algorithm PQ-Sort(S, C)
Input list S, comparator C for the
elements of S
Output list S sorted in increasing
order according to C
P ← priority queue with

 comparator C
while ¬S.isEmpty ()

 e ← S.remove(S.first ())
P.insert (e, ∅)

while ¬P.isEmpty()
 e ← P.removeMin().getKey()
S.addLast(e)

© 2014 Goodrich, Tamassia, Goldwasser

Priority Queues 14

Selection-Sort

q  Selection-sort is the variation of PQ-sort where the
priority queue is implemented with an unsorted
sequence

q  Running time of Selection-sort:
1.  Inserting the elements into the priority queue with n insert

operations takes O(n) time
2.  Removing the elements in sorted order from the priority

queue with n removeMin operations takes time
proportional to
 1 + 2 + …+ n

q  Selection-sort runs in O(n2) time

© 2014 Goodrich, Tamassia, Goldwasser

Priority Queues 3/19/14

8

Priority Queues 15

Selection-Sort Example
 Sequence S Priority Queue P
Input: (7,4,8,2,5,3,9) ()

Phase 1

 (a) (4,8,2,5,3,9) (7)
 (b) (8,2,5,3,9) (7,4)

 (g) () (7,4,8,2,5,3,9)

Phase 2

 (a) (2) (7,4,8,5,3,9)
 (b) (2,3) (7,4,8,5,9)
 (c) (2,3,4) (7,8,5,9)
 (d) (2,3,4,5) (7,8,9)
 (e) (2,3,4,5,7) (8,9)
 (f) (2,3,4,5,7,8) (9)
 (g) (2,3,4,5,7,8,9) ()

© 2014 Goodrich, Tamassia, Goldwasser

Priority Queues 16

Insertion-Sort
q  Insertion-sort is the variation of PQ-sort where the

priority queue is implemented with a sorted
sequence

q  Running time of Insertion-sort:
1.  Inserting the elements into the priority queue with n

insert operations takes time proportional to

1 + 2 + …+ n
2.  Removing the elements in sorted order from the priority

queue with a series of n removeMin operations takes
O(n) time

q  Insertion-sort runs in O(n2) time

© 2014 Goodrich, Tamassia, Goldwasser

Priority Queues 3/19/14

9

Priority Queues 17

Insertion-Sort Example
 Sequence S Priority queue P

Input: (7,4,8,2,5,3,9) ()

Phase 1
 (a) (4,8,2,5,3,9) (7)

 (b) (8,2,5,3,9) (4,7)
 (c) (2,5,3,9) (4,7,8)
 (d) (5,3,9) (2,4,7,8)
 (e) (3,9) (2,4,5,7,8)
 (f) (9) (2,3,4,5,7,8)
 (g) () (2,3,4,5,7,8,9)

Phase 2

 (a) (2) (3,4,5,7,8,9)
 (b) (2,3) (4,5,7,8,9)

 (g) (2,3,4,5,7,8,9) ()

© 2014 Goodrich, Tamassia, Goldwasser

Priority Queues 18

In-place Insertion-Sort
q  Instead of using an

external data structure,
we can implement
selection-sort and
insertion-sort in-place

q  A portion of the input
sequence itself serves as
the priority queue

q  For in-place insertion-sort
n  We keep sorted the initial

portion of the sequence
n  We can use swaps

instead of modifying the
sequence

5 4 2 3 1

5 4 2 3 1

4 5 2 3 1

2 4 5 3 1

2 3 4 5 1

1 2 3 4 5

1 2 3 4 5

© 2014 Goodrich, Tamassia, Goldwasser

