Presentation for use with the textbook Data Structures and Algorithms in Java, $6^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Hash Tables

Recall the Map ADT

- get(k): if the map M has an entry with key k, return its associated value; else, return null
- put(k, v): insert entry (k, v) into the map M; if key k is not already in M, then return null; else, return old value associated with k
a remove(k): if the map M has an entry with key k, remove it from M and return its associated value; else, return null
- size(), isEmpty()
- entrySet(): return an iterable collection of the entries in M
- keySet(): return an iterable collection of the keys in M
- values(): return an iterator of the values in M

Intuitive Notion of a Map

- Intuitively, a map M supports the abstraction of using keys as indices with a syntax such as M[k].
- As a mental warm-up, consider a restricted setting in which a map with n items uses keys that are known to be integers in a range from 0 to $N-1$, for some $N \geq n$.

0	1	2	3	4	5	6	7	8	9	10
	D		Z			C	Q			

More General Kinds of Keys

- But what should we do if our keys are not integers in the range from 0 to $\mathrm{N}-1$?
- Use a hash function to map general keys to corresponding indices in a table.
- For instance, the last four digits of a Social Security number.

Hash Functions and Hash Tables

- A hash function h maps keys of a given type to integers in a fixed interval [$0, N-1$]
- Example:

$$
\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{x} \bmod N
$$

is a hash function for integer keys

- The integer $\boldsymbol{h}(\boldsymbol{x})$ is called the hash value of key \boldsymbol{x}
- A hash table for a given key type consists of
- Hash function \boldsymbol{h}
- Array (called table) of size N
- When implementing a map with a hash table, the goal is to store item $(\boldsymbol{k}, \boldsymbol{o})$ at index $\boldsymbol{i}=\boldsymbol{h}(\boldsymbol{k})$

Example

- We design a hash table for a map storing entries as (SSN, Name), where SSN (social security number) is a nine-digit positive integer
- Our hash table uses an array of size $\boldsymbol{N}=10,000$ and the hash function
 $\boldsymbol{h}(\boldsymbol{x})=$ last four digits of \boldsymbol{x}

Hash Functions

- A hash function is usually specified as the composition of two functions:
Hash code:
$\boldsymbol{h}_{1}:$ keys \rightarrow integers
Compression function:
\boldsymbol{h}_{2} : integers $\rightarrow[0, \boldsymbol{N}-1]$

- The hash code is applied first, and the compression function is applied next on the result, i.e.,

$$
h(x)=h_{2}\left(h_{1}(x)\right)
$$

- The goal of the hash function is to "disperse" the keys in an apparently random way

Hash Codes

- Memory address:
- We reinterpret the memory address of the key object as an integer (default hash code of all Java objects)
- Good in general, except for numeric and string keys
- Integer cast:
- We reinterpret the bits of the key as an integer
- Suitable for keys of length less than or equal to the number of bits of the integer type (e.g., byte, short, int and float in Java)
- Component sum:
- We partition the bits of the key into components of fixed length (e.g., 16 or 32 bits) and we sum the components (ignoring overflows)
- Suitable for numeric keys of fixed length greater than or equal to the number of bits of the integer type (e.g., long and double in Java)

Hash Codes (cont.)

- Polynomial accumulation:
- We partition the bits of the key into a sequence of components of fixed length (e.g., 8,16 or 32 bits)

$$
a_{0} a_{1} \ldots a_{n-1}
$$

- We evaluate the polynomial $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots$ $\ldots+a_{n-1} z^{z^{n-1}}$ at a fixed value z, ignoring overflows
- Especially suitable for strings (e.g., the choice $z=33$ gives at most 6 collisions on a set of a We have $p(z)=p_{n-1}(z)$ 50,000 English words)
- Polynomial $p(z)$ can be evaluated in $\boldsymbol{O}(\boldsymbol{n})$ time using Horner's rule:
- The following polynomials are successively computed, each from the previous one in $\boldsymbol{O}(1)$ time

$$
p_{0}(z)=a_{n-1}
$$

$$
p_{i}(z)=a_{n-i-1}+z p_{i-1}(z)
$$

$$
(i=1,2, \ldots, n-1)
$$

Compression Functions

- Division:
- $\boldsymbol{h}_{2}(\boldsymbol{y})=\boldsymbol{y} \bmod \boldsymbol{N}$
- The size N of the hash table is usually chosen to be a prime
- The reason has to do with number theory and is beyond the scope of this course
- Multiply, Add and Divide (MAD):
- $\boldsymbol{h}_{2}(\boldsymbol{y})=(\boldsymbol{a} \boldsymbol{y}+\boldsymbol{b}) \bmod N$
- a and b are nonnegative integers such that $a \bmod N \neq 0$
- Otherwise, every integer would map to the same value b

Abstract Hash Map in Java

```
public abstract class AbstractHashMap<K,V> extends AbstractMap<K,V> {
protected int }\textrm{n}=0;\quad// number of entries in the dictionary
protected int capacity; // length of the table
protected int capac
// length of the table
private long scale, shift; // prime factor 
public AbstractHashMap(int cap, int p) {
        prime = p;
        capacity = cap
        capacity = cap;
        Random rand = new Random();
        scale = rand.nextlnt(prime-1)+1;
        shift = rand.nextlnt(prime);
        createTable();
    }
    public AbstractHashMap(int cap) { this(cap, 109345121); } // default prime
    public AbstractHashMap() {this(17);} // default capacity
    // public methods
    public int size() { return n; }
    public V get(K key) { return bucketGet(hashValue(key), key); }
    public V remove(K key) { return bucketRemove(hashValue(key), key); }
    public V put(K key, V value) {
        V answer = bucketPut(hashValue(key), key, value);
        if ( }\textrm{n}>>\mathrm{ capacity / 2) // keep load factor <= 0.5
        resize(2 * capacity - 1); // (or find a nearby prime)
        return answer;
    }
```


Abstract Hash Map in Java, 2

```
// private utilities
private int hashValue(K key) {
    return (int) ((Math.abs(key.hashCode()*scale + shift) % prime) % capacity);
}
private void resize(int newCap) {
    ArrayList<Entry<K,V>> buffer = new ArrayList<>>(n);
    for (Entry<K,V> e : entrySet())
        buffer.add(e);
    capacity = newCap;
    createTable(); // based on updated capacity
    n=0; // will be recomputed while reinserting entries
    for (Entry<K,V> e : buffer)
        put(e.getKey(), e.getValue());
    }
    // protected abstract methods to be implemented by subclasses
    protected abstract void createTable();
    protected abstract V bucketGet(int h, K k);
    protected abstract V bucketPut(int h, K k, V v);
    protected abstract V bucketRemove(int h, K k);
```

 \}

Collision Handling

- Collisions occur when different elements are mapped to the same cell
$0 \varnothing$
1 $\stackrel{\circ}{\varnothing} \rightarrow 0$ 025-612-0001 2 $3 \varnothing$
$4 \xrightarrow{\bullet}$ 451-229-0004-981-101-0004
- Separate Chaining: let each cell in the table point to a linked list of entries that map there

Separate chaining is simple, but requires additional memory outside the table

Map with Separate Chaining

Delegate operations to a list-based map at each cell:
Algorithm get(k):
return $A[h(k)]$.get(k)
Algorithm put(k,v):
$\mathrm{t}=\mathrm{A}[\mathrm{h}(\mathrm{k})]$.put(k,v)
if $\mathrm{t}=$ null then $\quad\{\mathrm{k}$ is a new key\}
$n=n+1$
return t
Algorithm remove(k):
$\mathrm{t}=\mathrm{A}[\mathrm{h}(\mathrm{k})]$.remove (k)
if $t \neq$ null then $\quad\{k$ was found $\}$
$\mathrm{n}=\mathrm{n}-1$
return t

Hash Table with Chaining

```
public class ChainHashMap<K,V> extends AbstractHashMap<K,V> {
    // a fixed capacity array of UnsortedTableMap that serve as buckets
    private UnsortedTableMap<K,V > [ ] table; // initialized within createTable
    public ChainHashMap() { super();}
    public ChainHashMap(int cap) { super(cap); }
    public ChainHashMap(int cap, int p) { super(cap, p); }
    ** Creates an empty table having length equal to current capacity. */
    protected void createTable() {
        table =(UnsortedTableMap<K,V>[ ]) new UnsortedTableMap[capacity];
    }
    /** Returns value associated with key k in bucket with hash value h, or else null. */
    protected V bucketGet(int h, K k) {
        UnsortedTableMap<K,V> bucket = table[h];
        if (bucket == null) return null;
        return bucket.get(k);
    }
    /** Associates key k with value v in bucket with hash value h; returns old value. */
    protected V bucketPut(int h, K k,V v) {
        UnsortedTableMap<K,V> bucket = table[h];
        if (bucket == null)
            bucket = table[h] = new UnsortedTableMap<>();
        int oldSize = bucket.size( );
        V answer = bucket.put(k,v)
        n += (bucket.size() - oldSize); // size may have increased
        return answer;
}
```

(C) 2014 Goodrich, Tamassia, Godlwasser Hash Tables $\quad 15$

Hash Table with Chaining, 2

```
/** Removes entry having key k from bucket with hash value h (if any). */
    protected V bucketRemove(int h, K k) {
        UnsortedTableMap<K,V> bucket = table[h];
        if (bucket == null) return null;
        int oldSize = bucket.size();
        V answer = bucket.remove(k);
        n -= (oldSize - bucket.size()); // size may have decreased
        return answer;
    }
    /** Returns an iterable collection of all key-value entries of the map. */
    public Iterable<Entry<K,V>> entrySet() {
        ArrayList<Entry<K,V>> buffer = new ArrayList <> ();
        for (int h=0; h < capacity; h++)
            if (table[h] != null)
                for (Entry<K,V> entry : table[h].entrySet())
                    buffer.add(entry);
        return buffer;
    }
}
```


Linear Probing

- Open addressing: the colliding item is placed in a different cell of the table
- Linear probing: handles collisions by placing the colliding item in the next (circularly) available table cell
- Each table cell inspected is referred to as a "probe"
- Colliding items lump together, causing future collisions to cause a longer sequence of probes

- Example:

- $\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{x} \bmod 13$
- Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

Search with Linear Probing

- Consider a hash table \boldsymbol{A} that uses linear probing
- $\operatorname{get}(\boldsymbol{k})$
- We start at cell $\boldsymbol{h}(\boldsymbol{k})$
- We probe consecutive locations until one of the following occurs
- An item with key k is found, or
- An empty cell is found, or
- \boldsymbol{N} cells have been unsuccessfully probed
© 2014 Goodrich, Tamassia, Godlwasser

```
Algorithm \(\operatorname{get}(k)\)
    \(i \leftarrow \boldsymbol{h}(\boldsymbol{k})\)
    \(p \leftarrow 0\)
    repeat
        \(c \leftarrow A[i]\)
        if \(c=\varnothing\)
            return null
        else if \(\operatorname{cogetKey}()=\boldsymbol{k}\)
            return c.getValue()
        else
        \(i \leftarrow(i+1) \bmod N\)
        \(\boldsymbol{p} \leftarrow \boldsymbol{p}+1\)
    until \(p=N\)
    return null
```


Updates with Linear Probing

- To handle insertions and deletions, we introduce a special object, called DEFUNCT, which replaces deleted elements
- remove (k)
- We search for an entry with key k
- If such an entry $(\boldsymbol{k}, \boldsymbol{o})$ is found, we replace it with the special item DEFUNCT and we return element \boldsymbol{o}
- Else, we return null
- $\operatorname{put}(k, o)$
- We throw an exception if the table is full
- We start at cell $\boldsymbol{h}(\boldsymbol{k})$
- We probe consecutive cells until one of the following occurs
- A cell i is found that is either empty or stores DEFUNCT, or
- N cells have been unsuccessfully probed
- We store $(\boldsymbol{k}, \boldsymbol{o})$ in cell \boldsymbol{i}

Probe Hash Map in Java

```
public class ProbeHashMap<K,V> extends AbstractHashMap<K,V> {
    private MapEntry<K,V > [ ] table; // a fixed array of entries (all initially null)
    private MapEntry<K,V> DEFUNCT = new MapEntry<>(null, null); //sentinel
    public ProbeHashMap() { super(); }
    public ProbeHashMap(int cap) { super(cap); }
    public ProbeHashMap(int cap, int p) { super(cap, p); }
    /** Creates an empty table having length equal to current capacity. */
    protected void createTable() {
        table = (MapEntry<K,V>[ ]) new MapEntry[capacity]; // safe cast
    }
    /** Returns true if location is either empty or the "defunct" sentinel. */
    private boolean isAvailable(int j) {
        return (table[j] == null || table[j] == DEFUNCT);
    }
```


Probe Hash Map in Java, 2

```
/** Returns index with key k, or -(a+1) such that k could be added at index a. */
private int findSlot(int h, K k) {
    int avail = -1; // no slot available (thus far)
    int j=h; // index while scanning table
    do {
        if (isAvailable(j)) { // may be either empty or defunct
        if (avail == -1) avail = j; // this is the first available slot?
        if (table[j] == null) break; // if empty, search fails immediately
        } else if (table[j].getKey().equals(k))
        return j;
        j = (j+1) % capacity; // keep looking (cyclically)
    } while (j!=h);
    return -(avail + 1);
// stop if we return to the start
}
    /** Returns value associated with key k in bucket with hash value h, or else null. */
    protected V bucketGet(int h, K k) {
    int j = findSlot(h, k);
    if (j<0) return null; // no match found
    return table[j].getValue();
}
```


Probe Hash Map in Java, 3

```
/** Associates key k with value v in bucket with hash value h; returns old value. */
protected V bucketPut(int h, K k, V v) {
    int j = findSlot(h, k);
        if (j>=0) // this key has an existing entry
        return table[j].setValue(v);
        table[-(j+1)] = new MapEntry<>(k, v); // convert to proper index
        n++;
        return null;
    }
    /** Removes entry having key k from bucket with hash value h (if any). */
    protected V bucketRemove(int h, K k) {
    int j = findSlot(h, k);
        if (j<0) return null;
        V answer = table[j].getValue();
        table[j] = DEFUNCT; // mark this slot as deactivated
        n--;
        return answer;
    }
    /** Returns an iterable collection of all key-value entries of the map. *
    public Iterable<Entry<K,V>> entrySet() {
        ArrayList<Entry<K,V>> buffer = new ArrayList<>();
        for (int h=0;h < capacity; h++)
        if (!isAvailable(h)) buffer.add(table[h]);
        return buffer;
    }
```

0 \}

Double Hashing

- Double hashing uses a secondary hash function $d(k)$ and handles collisions by placing an item in the first available cell of the series
$(i+j d(k)) \bmod N$
for $\boldsymbol{j}=0,1, \ldots, \boldsymbol{N}-1$
- The secondary hash function $d(k)$ cannot have zero values
- The table size N must be a prime to allow probing of all the cells
- Common choice of compression function for the secondary hash function:

$$
d_{2}(\boldsymbol{k})=\boldsymbol{q}-\boldsymbol{k} \bmod \boldsymbol{q}
$$

where

- $q<N$
- q is a prime
- The possible values for $d_{2}(k)$ are $1,2, \ldots, q$

Example of Double Hashing

- Consider a hash table storing integer keys that handles collision with double hashing
- $N=13$
- $\boldsymbol{h}(\boldsymbol{k})=\boldsymbol{k} \bmod 13$
- $\boldsymbol{d}(\boldsymbol{k})=7-\boldsymbol{k} \bmod 7$
- Insert keys 18, 41, 22, 44, 59, 32, 31, 73, in this order

\boldsymbol{k}	$\boldsymbol{h}(\boldsymbol{k}) \boldsymbol{d}(\boldsymbol{k})$ Probes				
18	5	3	5		
41	2	1	2		
22	9	6	9		
44	5	5	5	10	
59	7	4	7		
32	6	3	6		
31	5	4	5	-	0
73	8	4	8		

Performance of Hashing $\frac{\sqrt{2}}{\sqrt{2}}$
 - In the worst case, searches,

insertions and removals on a hash table take $\boldsymbol{O}(\boldsymbol{n})$ time

- The worst case occurs when all the keys inserted into the map collide
- The load factor $\alpha=\boldsymbol{n} / \boldsymbol{N}$ affects the performance of a hash table
- Assuming that the hash values are like random numbers, it can be shown that the expected number of probes for an insertion with open addressing is
$1 /(1-\alpha)$
- The expected running time of all the dictionary ADT operations in a hash table is $\boldsymbol{O}(1)$
- In practice, hashing is very fast provided the load factor is not close to 100%
- Applications of hash tables:
- small databases
- compilers
- browser caches

