
(2,4) Trees 3/20/14

1

© 2014 Goodrich, Tamassia, Goldwasser (2,4) Trees 1

(2,4) Trees

9

10 14 2 5 7

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser (2,4) Trees 2

Multi-Way Search Tree
! A multi-way search tree is an ordered tree such that

n  Each internal node has at least two children and stores d -1
key-element items (ki, oi), where d is the number of children

n  For a node with children v1 v2 … vd storing keys k1 k2 … kd-1
w  keys in the subtree of v1 are less than k1
w  keys in the subtree of vi are between ki-1 and ki (i = 2, …, d - 1)
w  keys in the subtree of vd are greater than kd-1

n  The leaves store no items and serve as placeholders

11 24

2 6 8 15

30

27 32

(2,4) Trees 3/20/14

2

© 2014 Goodrich, Tamassia, Goldwasser (2,4) Trees 3

Multi-Way Inorder Traversal
! We can extend the notion of inorder traversal from binary trees

to multi-way search trees
! Namely, we visit item (ki, oi) of node v between the recursive

traversals of the subtrees of v rooted at children vi and vi + 1
! An inorder traversal of a multi-way search tree visits the keys in

increasing order

11 24

2 6 8 15

30

27 32

1 3 5 7 9 11 13 19

15 17

2 4 6 14 18

8 12

10

16

© 2014 Goodrich, Tamassia, Goldwasser (2,4) Trees 4

Multi-Way Searching
! Similar to search in a binary search tree
! A each internal node with children v1 v2 … vd and keys k1 k2 … kd-1

n  k = ki (i = 1, …, d - 1): the search terminates successfully
n  k < k1: we continue the search in child v1
n  ki-1 < k < ki (i = 2, …, d - 1): we continue the search in child vi
n  k > kd-1: we continue the search in child vd

! Reaching an external node terminates the search unsuccessfully
! Example: search for 30

11 24

2 6 8 15

30

27 32

(2,4) Trees 3/20/14

3

© 2014 Goodrich, Tamassia, Goldwasser (2,4) Trees 5

(2,4) Trees
! A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way

search with the following properties
n  Node-Size Property: every internal node has at most four children
n  Depth Property: all the external nodes have the same depth

! Depending on the number of children, an internal node of a
(2,4) tree is called a 2-node, 3-node or 4-node

10 15 24

2 8 12 27 32 18

© 2014 Goodrich, Tamassia, Goldwasser (2,4) Trees 6

Height of a (2,4) Tree
! Theorem: A (2,4) tree storing n items has height O(log n)

 Proof:
n  Let h be the height of a (2,4) tree with n items
n  Since there are at least 2i items at depth i = 0, … , h - 1 and no

items at depth h, we have
 n ≥ 1 + 2 + 4 + … + 2h-1 = 2h - 1

n  Thus, h ≤ log (n + 1)
! Searching in a (2,4) tree with n items takes O(log n) time

1

2

2h-1

0

items
0

1

h-1

h

depth

(2,4) Trees 3/20/14

4

© 2014 Goodrich, Tamassia, Goldwasser (2,4) Trees 7

Insertion
! We insert a new item (k, o) at the parent v of the leaf reached by

searching for k
n  We preserve the depth property but
n  We may cause an overflow (i.e., node v may become a 5-node)

! Example: inserting key 30 causes an overflow

27 32 35

10 15 24

2 8 12 18

10 15 24

2 8 12 27 30 32 35 18

v

v

© 2014 Goodrich, Tamassia, Goldwasser (2,4) Trees 8

Overflow and Split
! We handle an overflow at a 5-node v with a split operation:

n  let v1 … v5 be the children of v and k1 … k4 be the keys of v
n  node v is replaced nodes v' and v"

w  v' is a 3-node with keys k1 k2 and children v1 v2 v3
w  v" is a 2-node with key k4 and children v4 v5

n  key k3 is inserted into the parent u of v (a new root may be created)

! The overflow may propagate to the parent node u

15 24

12 27 30 32 35 18
v

u

v1 v2 v3 v4 v5

15 24 32

12 27 30 18
v'

u

v1 v2 v3 v4 v5

35
v"

(2,4) Trees 3/20/14

5

© 2014 Goodrich, Tamassia, Goldwasser (2,4) Trees 9

Analysis of Insertion
Algorithm put(k, o)
1. We search for key k to locate

the insertion node v
2. We add the new entry (k, o) at

node v
3. while overflow(v)

if isRoot(v)
 create a new empty root
above v

v ← split(v)

! Let T be a (2,4) tree
with n items
n  Tree T has O(log n)

height
n  Step 1 takes O(log n)

time because we visit
O(log n) nodes

n  Step 2 takes O(1) time
n  Step 3 takes O(log n)

time because each split
takes O(1) time and we
perform O(log n) splits

! Thus, an insertion in a
(2,4) tree takes O(log n)
time

© 2014 Goodrich, Tamassia, Goldwasser (2,4) Trees 10

Deletion
! We reduce deletion of an entry to the case where the item is at the

node with leaf children
! Otherwise, we replace the entry with its inorder successor (or,

equivalently, with its inorder predecessor) and delete the latter entry
! Example: to delete key 24, we replace it with 27 (inorder successor)

27 32 35

10 15 24

2 8 12 18

32 35

10 15 27

2 8 12 18

(2,4) Trees 3/20/14

6

© 2014 Goodrich, Tamassia, Goldwasser (2,4) Trees 11

Underflow and Fusion
! Deleting an entry from a node v may cause an underflow, where

node v becomes a 1-node with one child and no keys
! To handle an underflow at node v with parent u, we consider two

cases
! Case 1: the adjacent siblings of v are 2-nodes

n  Fusion operation: we merge v with an adjacent sibling w and move an
entry from u to the merged node v'

n  After a fusion, the underflow may propagate to the parent u

9 14

2 5 7 10

u

v
9

10 14

u

v' w
2 5 7

© 2014 Goodrich, Tamassia, Goldwasser (2,4) Trees 12

Underflow and Transfer
! To handle an underflow at node v with parent u, we consider

two cases
! Case 2: an adjacent sibling w of v is a 3-node or a 4-node

n  Transfer operation:
 1. we move a child of w to v
 2. we move an item from u to v
 3. we move an item from w to u

n  After a transfer, no underflow occurs

4 9

6 8 2

u

v w
4 8

6 2 9

u

v w

(2,4) Trees 3/20/14

7

© 2014 Goodrich, Tamassia, Goldwasser (2,4) Trees 13

Analysis of Deletion
! Let T be a (2,4) tree with n items

n  Tree T has O(log n) height
! In a deletion operation

n  We visit O(log n) nodes to locate the node from
which to delete the entry

n  We handle an underflow with a series of O(log n)
fusions, followed by at most one transfer

n  Each fusion and transfer takes O(1) time
! Thus, deleting an item from a (2,4) tree takes

O(log n) time

© 2014 Goodrich, Tamassia, Goldwasser (2,4) Trees 14

Comparison of Map Implementations

Search Insert Delete Notes

Hash
Table

1
expected

1
expected

1
expected

o  no ordered map
 methods
o  simple to implement

Skip List log n
high prob.

log n
high prob.

log n
high prob.

o  randomized insertion
o  simple to implement

AVL and
(2,4)
Tree

log n
worst-case

log n
worst-case

log n
worst-case

o  complex to implement

