Presentation for use with the textbook Data Structures and Algorithms in Java, $6^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

AVL Trees

AVL Tree Definition

- AVL trees are balanced
- An AVL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at most 1

An example of an AVL tree where the heights are shown next to the nodes

Height of an AVL Tree

Fact: The height of an AVL tree storing n keys is $O(\log n)$.
Proof (by induction): Let us bound $n(h)$: the minimum number of internal nodes of an AVL tree of height h.

- We easily see that $n(1)=1$ and $n(2)=2$
- For $n>2$, an AVL tree of height h contains the root node, one AVL subtree of height $n-1$ and another of height $n-2$.
- That is, $n(h)=1+n(h-1)+n(h-2)$
- Knowing $n(h-1)>n(h-2)$, we get $n(h)>2 n(h-2)$. So
$n(h)>2 n(h-2), n(h)>4 n(h-4), n(h)>8 n(n-6), \ldots$ (by induction), $n(h)>2^{i n}(h-2 i)$
- Solving the base case we get: $n(h)>2^{h / 2-1}$
- Taking logarithms: $\mathrm{h}<2 \log \mathrm{n}(\mathrm{h})+2$
- Thus the height of an AVL tree is O(log n)

Insertion

- Insertion is as in a binary search tree
- Always done by expanding an external node.
- Example:

Insertion Example, continued

unbalanced...

unbalanced...
...balanced

Restructuring (as Single Rotations)

- Single Rotations:

(c) 2014 Goodrich, Tamalssia, Goldwasser

Restructuring (as Double Rotations)

- double rotations:

Removal

- Removal begins as in a binary search tree, which means the node removed will become an empty external node. Its parent, w, may cause an imbalance.
- Example:

Rebalancing after a Removal

- Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height
- We perform a trinode restructuring to restore balance at z
- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached

AVL Tree Performance

AVL tree storing n items

- The data structure uses $O(n)$ space

- A single restructuring takes O (1) time
- using a linked-structure binary tree
- Searching takes $O(\log n)$ time
- height of tree is $\mathrm{O}(\log \mathrm{n})$, no restructures needed
- Insertion takes $O(\log n)$ time
- initial find is $\mathrm{O}(\log \mathrm{n})$
- restructuring up the tree, maintaining heights is $O(\log n)$
- Removal takes O(log n) time
- initial find is $\mathrm{O}(\log \mathrm{n})$
- restructuring up the tree, maintaining heights is $\mathrm{O}(\log \mathrm{n})$

Java Implementation

```
/** An implementation of a sorted map using an AVL tree. */
public class AVLTreeMap<K,V> extends TreeMap<K,V> {
    /** Constructs an empty map using the natural ordering of keys. */
    public AVLTreeMap() { super(); }
    /** Constructs an empty map using the given comparator to order keys. */
    public AVLTreeMap(Comparator<K> comp) { super(comp); }
    /** Returns the height of the given tree position. */
    protected int height(Position<Entry<K,V/>> p) {
        return tree.getAux(p);
}
    /** Recomputes the height of the given position based on its children's heights. */
    protected void recomputeHeight(Position<Entry<K,V>> p) {
        tree.setAux(p,1 + Math.max(height(left(p)), height(right(p))));
    }
    /** Returns whether a position has balance factor between -1 and 1 inclusive. */
    protected boolean isBalanced(Position<Entry<K,V>> p) {
        return Math.abs(height(left(p)) - height(right(p))) <= 1;
    }
```


Java Implementation, 2

```
/** Returns a child of p with height no smaller than that of the other child. */
protected Position<Entry<K,V>> tallerChild(Position<Entry<K,V>> p) {
        if (height(left(p)) > height(right(p))) return left(p); // clear winner
        if (height(left(p)) < height(right(p))) return right(p); // clear winner
        // equal height children; break tie while matching parent's orientation
        if (isRoot(p)) return left(p); // choice is irrelevant
        if (p== left(parent(p))) return left(p); // return aligned child
        else return right(p);
    }
```


Java Implementation, 3

```
protected void rebalance(Position<Entry<K,V>> p) {
    int oldHeight, newHeight;
    do {
        oldHeight = height(p); // not yet recalculated if internal
        if (!isBalanced(p)) { // imbalance detected
            // perform trinode restructuring, setting p to resulting root,
            // and recompute new local heights after the restructuring
            p = restructure(tallerChild(tallerChild(p)));
            recomputeHeight(left(p));
            recomputeHeight(right(p));
        }
        recomputeHeight(p);
        newHeight = height(p);
        p = parent(p);
        } while (oldHeight != newHeight && p!= null);
}
/** Overrides the TreeMap rebalancing hook that is called after an insertion. */
protected void rebalancelnsert(Position<Entry<K,V>> p) {
        rebalance(p);
    }
    /** Overrides the TreeMap rebalancing hook that is called after a deletion. */
    protected void rebalanceDelete(Position<Entry<K,V>> p) {
        if (!isRoot(p))
        rebalance(parent(p));
    }```

