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AVL Tree Definition 

! AVL trees are 
balanced 

! An AVL Tree is a 
binary search tree 
such that for 
every internal 
node v of T, the 
heights of the 
children of v can 
differ by at most 1 
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Height of an AVL Tree 
Fact: The height of an AVL tree storing n keys is O(log n). 
Proof (by induction): Let us bound n(h): the minimum number 
of internal nodes of an AVL tree of height h. 
! We easily see that n(1) = 1 and n(2) = 2 
! For n > 2, an AVL tree of height h contains the root node, 

one AVL subtree of height n-1 and another of height n-2. 
! That is, n(h) = 1 + n(h-1) + n(h-2) 
! Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So 

n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction), 
n(h) > 2in(h-2i) 

! Solving the base case we get: n(h) > 2 h/2-1 

! Taking logarithms: h < 2log n(h) +2 
! Thus the height of an AVL tree is O(log n) 
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Insertion 
! Insertion is as in a binary search tree 
! Always done by expanding an external node. 
! Example: 

44 

17 78 

32 50 88 

48 62 

54 
w 

b=x 

a=y 

c=z 

44 

17 78 

32 50 88 

48 62 

before insertion 

after insertion 



AVL Trees 3/20/14 

3 

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 5 

Trinode Restructuring 
! Let (a,b,c) be the inorder listing of x, y, z 
! Perform the rotations needed to make b the topmost node of the three 
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Insertion Example, continued 
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Restructuring (as Single Rotations) 
!   Single Rotations: 
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Restructuring (as Double Rotations) 
! double rotations: 

double rotationa = z

b = x
c = y
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Removal 
! Removal begins as in a binary search tree, which means the node 

removed will become an empty external node. Its parent, w, may 
cause an imbalance. 

! Example:  
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Rebalancing after a Removal 
! Let z be the first unbalanced node encountered while travelling up the tree 

from w. Also, let y be the child of z with the larger height, and let x be the 
child of y with the larger height 

! We perform a trinode restructuring to restore balance at z 
! As this restructuring may upset the balance of another node higher in the 

tree, we must continue checking for balance until the root of T is reached 
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AVL Tree Performance 
! AVL tree storing n items 

n  The data structure uses O(n) space 

n  A single restructuring takes O(1) time 
w  using a linked-structure binary tree 

n  Searching takes O(log n) time 
w  height of tree is O(log n), no restructures needed 

n  Insertion takes O(log n) time 
w  initial find is O(log n) 

w  restructuring up the tree, maintaining heights is O(log n) 

n  Removal takes O(log n) time 
w  initial find is O(log n) 
w  restructuring up the tree, maintaining heights is O(log n) 

© 2014 Goodrich, Tamassia, Goldwasser 

Java Implementation 

AVL Trees 12 



AVL Trees 3/20/14 

7 

© 2014 Goodrich, Tamassia, Goldwasser 

Java Implementation, 2 

AVL Trees 13 

© 2014 Goodrich, Tamassia, Goldwasser 

Java Implementation, 3 

AVL Trees 14 


