
AVL Trees 3/20/14

1

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 1

AVL Trees
6

3 8

4

v

z

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 2

AVL Tree Definition

! AVL trees are
balanced

! An AVL Tree is a
binary search tree
such that for
every internal
node v of T, the
heights of the
children of v can
differ by at most 1

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

An example of an AVL tree where the
heights are shown next to the nodes

AVL Trees 3/20/14

2

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 3

Height of an AVL Tree
Fact: The height of an AVL tree storing n keys is O(log n).
Proof (by induction): Let us bound n(h): the minimum number
of internal nodes of an AVL tree of height h.
! We easily see that n(1) = 1 and n(2) = 2
! For n > 2, an AVL tree of height h contains the root node,

one AVL subtree of height n-1 and another of height n-2.
! That is, n(h) = 1 + n(h-1) + n(h-2)
! Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So

n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction),
n(h) > 2in(h-2i)

! Solving the base case we get: n(h) > 2 h/2-1

! Taking logarithms: h < 2log n(h) +2
! Thus the height of an AVL tree is O(log n)

3

4 n(1)

n(2)

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 4

Insertion
! Insertion is as in a binary search tree
! Always done by expanding an external node.
! Example:

44

17 78

32 50 88

48 62

54
w

b=x

a=y

c=z

44

17 78

32 50 88

48 62

before insertion

after insertion

AVL Trees 3/20/14

3

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 5

Trinode Restructuring
! Let (a,b,c) be the inorder listing of x, y, z
! Perform the rotations needed to make b the topmost node of the three

b=y

a=z

c=x
T0

T1

T2 T3

b=y

a=z c=x

T0 T1 T2 T3

c=y

b=x

a=z

T0

T1 T2

T3 b=x

c=y a=z

T0 T1 T2 T3

Double rotation around
c and a

Single rotation
around b

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 6

Insertion Example, continued

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T0 T2

T3

x

y

z

2

3

4

5

6
7

1

The
image
cannot
be
display
ed.
Your
compu

88

44

17
78 32 50

48

62
2

4

1
1

2 2

3

1
54
1

T 0 T 1

T 2

T 3

x
y z

unbalanced...

...balanced
1

2
3

4

5

6

7

T 1

AVL Trees 3/20/14

4

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 7

Restructuring (as Single Rotations)
!   Single Rotations:

T0
T1

T2
T3

c = x
b = y

a = z

T0 T1 T2
T3

c = x
b = y

a = z
single rotation

T3
T2

T1
T0

a = x
b = y

c = z

T0T1T2
T3

a = x
b = y

c = z
single rotation

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 8

Restructuring (as Double Rotations)
! double rotations:

double rotationa = z

b = x
c = y

T0
T2

T1
T3 T0

T2
T3T1

a = z
b = x

c = y

double rotationc = z

b = x
a = y

T0
T2

T1
T3 T0

T2
T3 T1

c = z
b = x

a = y

AVL Trees 3/20/14

5

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 9

Removal
! Removal begins as in a binary search tree, which means the node

removed will become an empty external node. Its parent, w, may
cause an imbalance.

! Example:

44

17

78 32 50

88 48

62

54

44

17

78 50

88 48

62

54

before deletion of 32 after deletion

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 10

Rebalancing after a Removal
! Let z be the first unbalanced node encountered while travelling up the tree

from w. Also, let y be the child of z with the larger height, and let x be the
child of y with the larger height

! We perform a trinode restructuring to restore balance at z
! As this restructuring may upset the balance of another node higher in the

tree, we must continue checking for balance until the root of T is reached

44

17

78 50

88 48

62

54

w

c=x

b=y

a=z

44

17

78

50 88

48

62

54

AVL Trees 3/20/14

6

© 2014 Goodrich, Tamassia, Goldwasser AVL Trees 11

AVL Tree Performance
! AVL tree storing n items

n  The data structure uses O(n) space

n  A single restructuring takes O(1) time
w  using a linked-structure binary tree

n  Searching takes O(log n) time
w  height of tree is O(log n), no restructures needed

n  Insertion takes O(log n) time
w  initial find is O(log n)

w  restructuring up the tree, maintaining heights is O(log n)

n  Removal takes O(log n) time
w  initial find is O(log n)
w  restructuring up the tree, maintaining heights is O(log n)

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation

AVL Trees 12

AVL Trees 3/20/14

7

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation, 2

AVL Trees 13

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation, 3

AVL Trees 14

