Presentation for use with the textbook Data Structures and Algorithms in Java, $6^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Splay Trees

Slide by Matt Dickerson
 Splay Trees are Binary Search Trees

- entries stored only at internal nodes
- keys stored at nodes in the left subtree of v are less than or equal to the key stored at v
- keys stored at nodes in the right subtree of v are greater than or equal to the key stored at v

Searching in a Splay Tree:
 Starts the Same as in a BST

Slide by Matt Dickerson

- Search proceeds down the tree to found item or an external node.
- Example: Search for time with key 11.

Example Searching in a BST, continued

- search for key 8, ends at an internal node.
ds at

Splay Trees do Rotations after Every Operation (Even Search)

* new operation: splay
- splaying moves a node to the root using rotations
- right rotation
- makes the left child x of a node y into y ' s parent; y becomes the right child of x

- left rotation
- makes the right child y of a node x into x ' s parent; x becomes the left child of y

Splaying Example

- let $x=(8, \mathrm{~N})$
- x is the right child of its parent, which is the left child of the grandparent
- left-rotate around p, then rightrotate around g

(after first rotation)

3.

(after second rotation)
x is not yet the root, so
© 2013 Gしbdich Tarmassia, Goldwasser
we splay again

Splaying Example, Continued

Splay Tree Definition

- a splay tree is a binary search tree where a node is splayed after it is accessed (for a search or update)
- deepest internal node accessed is splayed
- splaying costs $O(h)$, where h is height of the tree
- which is still $O(n)$ worst-case
- $\mathrm{O}(\mathrm{h})$ rotations, each of which is $\mathrm{O}(1)$

Splay Trees \& Ordered Dictionaries

* which nodes are splayed after each operation?

method	splay node
Search for k	if key found, use that node if key not found, use parent of ending external node
Insert (k,v)	use the new node containing the entry inserted
Remove item with key k	use the parent of the internal node that was actually removed from the tree (the parent of the node that the removed item was swapped with)

Amortized Analysis of Splay Trees

- Running time of each operation is proportional to time for splaying.
- Define rank(v) as the logarithm (base 2) of the number of nodes in subtree rooted at v .
Costs: zig = \$1, zig-zig = \$2, zig-zag = \$2.
- Thus, cost for playing a node at depth d = \$d.
- Imagine that we store rank(v) cyber-dollars at each node v of the splay tree (just for the sake of analysis).

Cost per zig

- Doing a zig at x costs at most rank' $(x)-\operatorname{rank}(x)$:
- cost $=\operatorname{rank}^{\prime}(x)+\operatorname{rank}^{\prime}(y)-\operatorname{rank}(y)-\operatorname{rank}(x)$

$$
\leq \operatorname{rank}(x)-\operatorname{rank}(x) .
$$

Cost per zig-zig and zig-zag

- Doing a zig-zig or zig-zag at x costs at most

$$
\text { 3(rank' (x) - rank(x)) - } 2
$$

Cost of Splaying

Cost of splaying a node x at depth d of a tree rooted at r:

- at most $3(\operatorname{rank}(r)-\operatorname{rank}(x))-\mathrm{d}+2$:
- Proof: Splaying x takes $d / 2$ splaying substeps:

$$
\begin{aligned}
\operatorname{cost} & \leq \sum_{i=1}^{d / 2} \operatorname{cost}_{i} \\
& \leq \sum_{i=1}^{d / 2}\left(3\left(\operatorname{rank}_{i}(x)-\operatorname{rank}_{i-1}(x)\right)-2\right)+2 \\
& =3\left(\operatorname{rank}(r)-\operatorname{rank}_{0}(x)\right)-2(d / d)+2 \\
& \leq 3(\operatorname{rank}(r)-\operatorname{rank}(x))-d+2 .
\end{aligned}
$$

Performance of Splay Trees

- Recall: rank of a node is logarithm of its size.
- Thus, amortized cost of any splay operation is O($\log n$)
- In fact, the analysis goes through for any reasonable definition of rank(x)
- This implies that splay trees can actually adapt to perform searches on frequentlyrequested items much faster than $\mathrm{O}(\log \mathrm{n})$ in some cases

Java Implementation

```
/** An implementation of a sorted map using a splay tree. */
public class SplayTreeMap<K,V> extends TreeMap<K,V> {
    /** Constructs an empty map using the natural ordering of keys. */
    public SplayTreeMap() { super(); }
    /** Constructs an empty map using the given comparator to order keys. */
    public SplayTreeMap(Comparator<K> comp) { super(comp); }
    /** Utility used to rebalance after a map operation. */
    private void splay(Position<Entry<K,V>> p) {
        while (!isRoot(p)) {
            Position<Entry<K,V>> parent = parent(p);
            Position<Entry<K,V>> grand = parent(parent);
            if (grand == null) // zig case
                rotate(p);
            else if ((parent == left(grand)) == (p == left(parent))) { // zig-zig case
                rotate(parent); // move PARENT upward
                rotate(p); // then move p upward
            } else {
                rotate(p); // move p upward
                rotate(p); // move p upward again
            }
        }
    }

\section*{Java Implementation}
```

// override the various TreeMap rebalancing hooks to perform the appropriate splay
protected void rebalanceAccess(Position<Entry<K,V>> p) {
if (isExternal(p)) p = parent(p);
if (p!= null) splay(p);
}
protected void rebalancelnsert(Position<Entry<K,V>> p) {
splay(p);
}
protected void rebalanceDelete(Position<Entry<K,V>> p) {
if (!isRoot(p)) splay(parent(p));
}

```
\}```

