
Quick-Sort 3/25/14 15:58

1

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 1

Quick-Sort

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4 7 9 → 7 9

2 → 2 9 → 9

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 2

Quick-Sort
! Quick-sort is a randomized

sorting algorithm based
on the divide-and-conquer
paradigm:
n  Divide: pick a random

element x (called pivot) and
partition S into
w  L elements less than x
w  E elements equal x
w  G elements greater than x

n  Recur: sort L and G
n  Conquer: join L, E and G

x

x

L G E

x

Quick-Sort 3/25/14 15:58

2

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 3

Partition
! We partition an input

sequence as follows:
n  We remove, in turn, each

element y from S and
n  We insert y into L, E or G,

depending on the result of
the comparison with the
pivot x

! Each insertion and removal
is at the beginning or at the
end of a sequence, and
hence takes O(1) time

! Thus, the partition step of
quick-sort takes O(n) time

Algorithm partition(S, p)
 Input sequence S, position p of pivot
 Output subsequences L, E, G of the
 elements of S less than, equal to,
 or greater than the pivot, resp.
 L, E, G ← empty sequences
x ← S.remove(p)
while ¬S.isEmpty()

 y ← S.remove(S.first())
 if y < x
 L.addLast(y)
 else if y = x
 E.addLast(y)
 else { y > x }
 G.addLast(y)

return L, E, G

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation

Quick-Sort 4

Quick-Sort 3/25/14 15:58

3

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 5

Quick-Sort Tree
! An execution of quick-sort is depicted by a binary tree

n  Each node represents a recursive call of quick-sort and stores
w  Unsorted sequence before the execution and its pivot
w  Sorted sequence at the end of the execution

n  The root is the initial call
n  The leaves are calls on subsequences of size 0 or 1

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4 7 9 → 7 9

2 → 2 9 → 9

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 6

Execution Example
! Pivot selection

7 2 9 4 → 2 4 7 9

2 → 2

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8 9 4 → 4 9

9 → 9 4 → 4

Quick-Sort 3/25/14 15:58

4

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 7

Execution Example (cont.)
! Partition, recursive call, pivot selection

 2 4 3 1 → 2 4 7 9

9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8 2 → 2

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 8

Execution Example (cont.)
! Partition, recursive call, base case

 2 4 3 1 →→ 2 4 7

1 → 1 9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 → → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8

Quick-Sort 3/25/14 15:58

5

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 9

Execution Example (cont.)
! Recursive call, …, base case, join

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 10

Execution Example (cont.)

! Recursive call, pivot selection

7 9 7 1 → 1 3 8 6

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

Quick-Sort 3/25/14 15:58

6

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 11

Execution Example (cont.)
! Partition, …, recursive call, base case

7 9 7 1 → 1 3 8 6

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 12

Execution Example (cont.)
! Join, join

7 9 7 → 17 7 9

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

Quick-Sort 3/25/14 15:58

7

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 13

Worst-case Running Time
! The worst case for quick-sort occurs when the pivot is the unique

minimum or maximum element
! One of L and G has size n - 1 and the other has size 0
! The running time is proportional to the sum

n + (n - 1) + … + 2 + 1
! Thus, the worst-case running time of quick-sort is O(n2)

depth time

0 n

1 n - 1

… …

n - 1 1

…

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 14

Expected Running Time
! Consider a recursive call of quick-sort on a sequence of size s

n  Good call: the sizes of L and G are each less than 3s/4
n  Bad call: one of L and G has size greater than 3s/4

! A call is good with probability 1/2
n  1/2 of the possible pivots cause good calls:

7 9 7 1 → 1

7 2 9 4 3 7 6 1 9

2 4 3 1 7 2 9 4 3 7 6 1

7 2 9 4 3 7 6 1

Good call Bad call

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivots Bad pivots Bad pivots

Quick-Sort 3/25/14 15:58

8

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 15

Expected Running Time, Part 2
! Probabilistic Fact: The expected number of coin tosses required in

order to get k heads is 2k
! For a node of depth i, we expect

n  i/2 ancestors are good calls
n  The size of the input sequence for the current call is at most (3/4)i/2n

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

! Therefore, we have
n  For a node of depth 2log4/3n, the

expected input size is one
n  The expected height of the

quick-sort tree is O(log n)
! The amount or work done at the

nodes of the same depth is O(n)
! Thus, the expected running time

of quick-sort is O(n log n)

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 16

In-Place Quick-Sort
! Quick-sort can be implemented

to run in-place
! In the partition step, we use

replace operations to rearrange
the elements of the input
sequence such that
n  the elements less than the

pivot have rank less than h
n  the elements equal to the pivot

have rank between h and k
n  the elements greater than the

pivot have rank greater than k
! The recursive calls consider

n  elements with rank less than h
n  elements with rank greater

than k

Algorithm inPlaceQuickSort(S, l, r)
 Input sequence S, ranks l and r
 Output sequence S with the
 elements of rank between l and r
 rearranged in increasing order
 if l ≥ r

 return
i ← a random integer between l and r
x ← S.elemAtRank(i)
(h, k) ← inPlacePartition(x)
inPlaceQuickSort(S, l, h - 1)
inPlaceQuickSort(S, k + 1, r)

Quick-Sort 3/25/14 15:58

9

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 17

In-Place Partitioning
! Perform the partition using two indices to split S into L

and E U G (a similar method can split E U G into E and G).

! Repeat until j and k cross:
n  Scan j to the right until finding an element > x.
n  Scan k to the left until finding an element < x.
n  Swap elements at indices j and k

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k

(pivot = 6)

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation

Quick-Sort 18

Quick-Sort 3/25/14 15:58

10

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 19

Summary of Sorting Algorithms
Algorithm Time Notes

selection-sort O(n2) §  in-place
§  slow (good for small inputs)

insertion-sort O(n2) §  in-place
§  slow (good for small inputs)

quick-sort O(n log n)
expected

§  in-place, randomized
§  fastest (good for large inputs)

heap-sort O(n log n) §  in-place
§  fast (good for large inputs)

merge-sort O(n log n) §  sequential data access
§  fast (good for huge inputs)

