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Quick-Sort 

7  4  9  6  2  →  2  4  6  7  9 

4  2  →  2  4 7  9  →  7  9 

2 → 2 9 → 9 

Presentation for use with the textbook Data Structures and 
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, 
and M. H. Goldwasser, Wiley, 2014 
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Quick-Sort 
! Quick-sort is a randomized 

sorting algorithm based 
on the divide-and-conquer 
paradigm: 
n  Divide: pick a random 

element x (called pivot) and 
partition S into  
w  L elements less than x 
w  E elements equal x 
w  G elements greater than x 

n  Recur: sort L and G 
n  Conquer: join L, E and G 

x 

x 

L G E 

x 
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Partition 
! We partition an input 

sequence as follows: 
n  We remove, in turn, each 

element y from S and  
n  We insert y into L, E or G, 

depending on the result of 
the comparison with the 
pivot x 

! Each insertion and removal 
is at the beginning or at the 
end of a sequence, and 
hence takes O(1) time 

! Thus, the partition step of 
quick-sort takes O(n) time 

Algorithm partition(S, p) 
 Input sequence S, position p of pivot  
 Output subsequences L, E, G of the  
  elements of S less than, equal to, 
  or greater than the pivot, resp. 
 L, E, G ← empty sequences 
x ← S.remove(p)  
while ¬S.isEmpty() 

 y ← S.remove(S.first()) 
 if y < x 
  L.addLast(y) 
 else if y = x 
   E.addLast(y) 
 else { y > x } 
  G.addLast(y) 

return L, E, G 
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Java Implementation 

Quick-Sort 4 



Quick-Sort 3/25/14 15:58 

3 

© 2014 Goodrich, Tamassia, Goldwasser Quick-Sort 5 

Quick-Sort Tree 
! An execution of quick-sort is depicted by a binary tree 

n  Each node represents a recursive call of quick-sort and stores 
w  Unsorted sequence before the execution and its pivot 
w  Sorted sequence at the end of the execution 

n  The root is the initial call  
n  The leaves are calls on subsequences of size 0 or 1 

7  4  9  6  2  →  2  4  6  7  9 

4  2  →  2  4 7  9  →  7  9 

2 → 2 9 → 9 
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Execution Example 
! Pivot selection 

7  2  9  4  →  2  4  7  9 

2 → 2 

7  2  9  4 3  7  6  1  →  1  2  3  4  6  7  8  9 

3  8  6  1  →  1  3  8  6 

3 → 3 8 → 8 9  4  →  4  9 

9 → 9 4 → 4 
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Execution Example (cont.) 
! Partition, recursive call, pivot selection 

 2  4  3  1 →  2  4  7  9 

9  4  →  4  9 

9 → 9 4 → 4 

7  2  9  4  3  7  6  1 →  1  2  3  4  6  7  8  9 

3  8  6  1  →  1  3  8  6 

3 → 3 8 → 8 2 → 2 
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Execution Example (cont.) 
! Partition, recursive call, base case 

  2  4  3  1 →→  2  4  7   

1 → 1 9  4  →  4  9 

9 → 9 4 → 4 

7  2  9  4 3  7  6  1 → →  1  2  3  4  6  7  8  9 

3  8  6  1  →  1  3  8  6 

3 → 3 8 → 8 
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Execution Example (cont.) 
! Recursive call, …, base case, join 

3  8  6  1  →  1  3  8  6 

3 → 3 8 → 8 

7  2  9  4 3  7  6  1 →  1  2  3  4  6  7  8  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

9 → 9 4 → 4 
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Execution Example (cont.) 

! Recursive call, pivot selection 

7  9  7  1  →  1  3  8  6 

8 → 8 

7  2  9  4 3  7  6  1 →  1  2  3  4  6  7  8  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

9 → 9 4 → 4 

9 → 9 
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Execution Example (cont.) 
! Partition, …, recursive call, base case 

7  9  7  1  →  1  3  8  6 

8 → 8 

7  2  9  4 3  7  6  1 →  1  2  3  4  6  7  8  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

9 → 9 4 → 4 

9 → 9 
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Execution Example (cont.) 
! Join, join 

7  9  7   →  17  7  9 

8 → 8 

7  2  9  4  3  7  6  1  → 1  2  3  4  6  7  7  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

9 → 9 4 → 4 

9 → 9 
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Worst-case Running Time 
! The worst case for quick-sort occurs when the pivot is the unique 

minimum or maximum element 
! One of L and G has size n - 1 and the other has size 0 
! The running time is proportional to the sum 

n + (n - 1) + … + 2 + 1 
! Thus, the worst-case running time of quick-sort is O(n2) 

depth time 

0 n 

1 n - 1 

… … 

n - 1 1 

… 
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Expected Running Time 
! Consider a recursive call of quick-sort on a sequence of size s 

n  Good call: the sizes of L and G are each less than 3s/4 
n  Bad call: one of L and G has size greater than 3s/4 

! A call is good with probability 1/2 
n  1/2 of the possible pivots cause good calls: 

7  9  7  1  →  1 

7  2  9  4 3  7  6  1 9 

2  4  3  1  7 2 9 4 3 7 6 1 

7  2  9  4 3  7  6  1 

Good call Bad call 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Good pivots Bad pivots Bad pivots 
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Expected Running Time, Part 2 
! Probabilistic Fact: The expected number of coin tosses required in 

order to get k heads is 2k 
! For a node of depth i, we expect 

n  i/2 ancestors are good calls 
n  The size of the input sequence for the current call is at most (3/4)i/2n 

s(r)

s(a) s(b)

s(c) s(d) s(f)s(e)

time per levelexpected height

O(log n)

O(n)

O(n)

O(n)

total expected time: O(n log n)

! Therefore, we have 
n  For a node of depth 2log4/3n, the 

expected input size is one 
n  The expected height of the 

quick-sort tree is O(log n) 
! The amount or work done at the 

nodes of the same depth is O(n) 
! Thus, the expected running time 

of quick-sort is O(n log n) 
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In-Place Quick-Sort 
! Quick-sort can be implemented 

to run in-place 
! In the partition step, we use 

replace operations to rearrange 
the elements of the input 
sequence such that 
n  the elements less than the 

pivot have rank less than h 
n  the elements equal to the pivot 

have rank between h and k 
n  the elements greater than the 

pivot have rank greater than k 
! The recursive calls consider 

n  elements with rank less than h 
n  elements with rank greater 

than k 

Algorithm inPlaceQuickSort(S, l, r) 
 Input sequence S, ranks l and r 
 Output sequence S with the 
  elements of rank between l and r 
  rearranged in increasing order 
  if l ≥ r 

  return 
i ← a random integer between l and r  
x ← S.elemAtRank(i)  
(h, k) ← inPlacePartition(x) 
inPlaceQuickSort(S, l, h - 1) 
inPlaceQuickSort(S, k + 1, r) 
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In-Place Partitioning 
! Perform the partition using two indices to split S into L 

and E U G (a similar method can split E U G into E and G). 

! Repeat until j and k cross: 
n  Scan j to the right until finding an element > x. 
n  Scan k to the left until finding an element < x. 
n  Swap elements at indices j and k 

3  2  5  1  0  7  3  5  9  2  7  9  8  9  7  6  9 

j k 

(pivot = 6) 

3  2  5  1  0  7  3  5  9  2  7  9  8  9  7  6  9 

j k 
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Java Implementation 

Quick-Sort 18 
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Summary of Sorting Algorithms 
Algorithm Time Notes 

selection-sort O(n2) §  in-place 
§  slow (good for small inputs) 

insertion-sort O(n2) §  in-place 
§  slow (good for small inputs) 

quick-sort O(n log n) 
expected 

§  in-place, randomized 
§  fastest (good for large inputs) 

heap-sort O(n log n) §  in-place 
§  fast (good for large inputs) 

merge-sort O(n log n) §  sequential data access 
§  fast  (good for huge inputs) 


