Presentation for use with the textbook Data Structures and Algorithms in Java, $6^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Selection

The Selection Problem

- Given an integer k and n elements $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ taken from a total order, find the k-th smallest element in this set.
- Of course, we can sort the set in O(n log n) time and then index the k-th element.

$$
\mathrm{k}=3 \quad 749 \underline{6} 2 \rightarrow 24 \underline{6} 79
$$

- Can we solve the selection problem faster?

Quick-Select

- Quick-select is a randomized selection algorithm based on the prune-and-search
 paradigm:
- Prune: pick a random element \boldsymbol{x} (called pivot) and partition S into
- L : elements less than x
- \boldsymbol{E} : elements equal \boldsymbol{x}
- \boldsymbol{G} : elements greater than \boldsymbol{x}

- Search: depending on k, either answer is in \boldsymbol{E}, or we need to recur in either \boldsymbol{L} or \boldsymbol{G}

$|\boldsymbol{L}|<\boldsymbol{k} \leq|\boldsymbol{L}|+|\boldsymbol{E}|$
(done)

Partition

- We partition an input sequence as in the quick-sort algorithm:
- We remove, in turn, each element \boldsymbol{y} from S and
- We insert \boldsymbol{y} into $\boldsymbol{L}, \boldsymbol{E}$ or \boldsymbol{G}, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes $\boldsymbol{O}(1)$ time
- Thus, the partition step of quick-select takes $\boldsymbol{O}(\boldsymbol{n})$ time

Algorithm $\operatorname{partition}(S, p)$
Input sequence \boldsymbol{S}, position \boldsymbol{p} of pivot
Output subsequences L, E, G of the elements of \boldsymbol{S} less than, equal to, or greater than the pivot, resp.
$L, E, G \leftarrow$ empty sequences
$x \leftarrow$ S.remove (p)
while \neg S.isEmpty()
$y \leftarrow$ S.remove $($ S.first ()$)$
if $y<x$
L.addLast(y)
else if $y=x$
E.addLast(y)
else $\{\boldsymbol{y}>\boldsymbol{x}\}$
G.addLast(y)
return L, E, G

Quick-Select Visualization

An execution of quick-select can be visualized by a recursion path

- Each node represents a recursive call of quick-select, and stores k and the remaining sequence

Expected Running Time

- Consider a recursive call of quick-select on a sequence of size s
- Good call: the sizes of L and G are each less than $3 \boldsymbol{s} / 4$
- Bad call: one of L and \boldsymbol{G} has size greater than $3 \boldsymbol{s} / 4$

Good call

Bad call

- A call is good with probability $1 / 2$
- $1 / 2$ of the possible pivots cause good calls:

Expected Running Time, Part 2

- Probabilistic Fact \#1: The expected number of coin tosses required in order to get one head is two
- Probabilistic Fact \#2: Expectation is a linear function:
- $E(X+\boldsymbol{Y})=\boldsymbol{E}(\boldsymbol{X})+\boldsymbol{E}(\boldsymbol{Y})$
- $E(c X)=c E(X)$
- Let $T(n)$ denote the expected running time of quick-select.
- By Fact \#2,
- $T(n) \leq T(3 n / 4)+b n^{*}$ (expected \# of calls before a good call)
- By Fact \#1,
- $T(n) \leq T(3 n / 4)+2 b n$
- That is, $\mathrm{T}(\mathrm{n})$ is a geometric series:
- $T(n) \leq 2 b n+2 b(3 / 4) n+2 b(3 / 4)^{2} n+2 b(3 / 4)^{3} n+\ldots$
- So $T(n)$ is $O(n)$.
- We can solve the selection problem in $\mathrm{O}(\mathrm{n})$ expected time.

Deterministic Selection

- We can do selection in $O(n)$ worst-case time.
- Main idea: recursively use the selection algorithm itself to find a good pivot for quick-select:
- Divide S into $n / 5$ sets of 5 each
- Find a median in each set
- Recursively find the median of the "baby" medians.

