Presentation for use with the textbook Data Structures and Algorithms in Java, $6{ }^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

The Greedy Method and Text Compression

The Greedy Method Technique

The greedy method is a general algorithm design paradigm, built on the following elements:

- configurations: different choices, collections, or values to find
- objective function: a score assigned to configurations, which we want to either maximize or minimize
- It works best when applied to problems with the greedy-choice property:
- a globally-optimal solution can always be found by a series of local improvements from a starting configuration.

Text Compression

- Given a string X, efficiently encode X into a smaller string Y
- Saves memory and/or bandwidth
- A good approach: Huffman encoding
- Compute frequency f(c) for each character c.
- Encode high-frequency characters with short code words
- No code word is a prefix for another code
- Use an optimal encoding tree to determine the code words

Encoding Tree Example

- A code is a mapping of each character of an alphabet to a binary code-word
- A prefix code is a binary code such that no code-word is the prefix of another code-word
- An encoding tree represents a prefix code
- Each external node stores a character
- The code word of a character is given by the path from the root to the external node storing the character (0 for a left child and 1 for a right child)

00	010	011	10	11
a	b	c	d	e

b C 4

Encoding Tree Optimization

- Given a text string \boldsymbol{X}, we want to find a prefix code for the characters of X that yields a small encoding for X
- Frequent characters should have long code-words
- Rare characters should have short code-words
- Example
- $X=$ abracadabra
- \boldsymbol{T}_{1} encodes \boldsymbol{X} into 29 bits
- \boldsymbol{T}_{2} encodes \boldsymbol{X} into 24 bits

Huffman' s Algorithm

- Given a string X, Huffman's algorithm construct a prefix code the minimizes the size of the encoding of X
- It runs in time $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{d} \log \boldsymbol{d})$, where \boldsymbol{n} is the size of \boldsymbol{X} and d is the number of distinct characters of \boldsymbol{X}
* A heap-based priority queue is used as an auxiliary structure

Huffman' s Algorithm

Algorithm Huffman (X) :
Input: String X of length n with d distinct characters Output: Coding tree for X
Compute the frequency $f(c)$ of each character c of X.
Initialize a priority queue Q.
for each character c in X do
Create a single-node binary tree T storing c.
Insert T into Q with key $f(c)$.
while len $(Q)>1$ do
$\left(f_{1}, T_{1}\right)=$ Q.remove_min()
$\left(f_{2}, T_{2}\right)=$ Q.remove_min()
Create a new binary tree T with left subtree T_{1} and right subtree T_{2}.
Insert T into Q with key $f_{1}+f_{2}$.
$(f, T)=Q$. remove_min ()
return tree T
© 2014 Goodrich, Tamassia, Goldwasser
Greedy Method
7

Example

$\boldsymbol{X}=$ abracadabra
Frequencies

a	b	c	d	r
5	2	1	1	2

© 2014 Goodrich, Tamassia, Goldwasser

Extended Huffman Tree Example

String: a fast runner need never be afraid of the dark

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c}
\text { Character } & & \mathbf{a} & \mathbf{b} & \mathbf{d} & \mathbf{e} & \mathbf{f} & \mathbf{h} & \mathbf{i} & \mathbf{k} & \mathbf{n} & \mathbf{o} & \mathbf{r} & \mathbf{s} & \mathbf{t} & \mathbf{u} & \mathbf{v} \\
\hline \text { Frequency } & 9 & 5 & 1 & 3 & 7 & 3 & 1 & 1 & 1 & 4 & 1 & 5 & 1 & 2 & 1 & 1
\end{array}
$$

The Fractional Knapsack Problem (not in book)

- Given: A set S of n items, with each item i having
- b_{i} - a positive benefit
- w_{i} - a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W.
- If we are allowed to take fractional amounts, then this is the fractional knapsack problem.
- In this case, we let x_{i} denote the amount we take of item i
- Objective: maximize $\sum_{i \in S} b_{i}\left(x_{i} / w_{i}\right)$
- Constraint: $\quad \sum_{i \in S} x_{i} \leq W$

Example

- Given: A set S of n items, with each item i having
- b_{i} - a positive benefit
- w_{i} - a positive weight
- Goal: Choose items with maximum total benefit but with weight at most W .

Items:

(\$ per ml)
(c) 2014 Goodrich, Tamassia, Goldwasser

The Fractional Knapsack Algorithm

- Greedy choice: Keep taking item with highest value (benefit to weight ratio)
- Since $\sum_{i=\Theta} b_{i}\left(x_{i} / w_{i}\right)=\sum_{i \in}\left(b_{i} / w_{i}\right) x_{i}$
- Run time: O(n $\log \mathrm{n})$. Why?
- Correctness: Suppose there is a better solution
- there is an item i with higher value than a chosen item j , but $\mathrm{x}_{\mathrm{i}}<\mathrm{w}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}>0$ and $\mathrm{v}_{\mathrm{i}}<\mathrm{v}_{\mathrm{j}}$
- If we substitute some i with j, we get a better solution
- How much of $\mathrm{i}: \min \left\{\mathrm{w}_{\mathrm{i}}-\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right\}$
- Thus, there is no better
 solution than the greedy one

Task Scheduling (not in book)

- Given: a set T of n tasks, each having:

- A start time, s_{i}
- A finish time, $\mathrm{f}_{\mathrm{i}}\left(\right.$ where $\mathrm{s}_{\mathrm{i}}<\mathrm{f}_{\mathrm{i}}$)
- Goal: Perform all the tasks using a minimum number of "machines."

Task Scheduling Algorithm

- Greedy choice: consider tasks by their start time and use as few machines as possible with this order.
- Run time: O(n $\log \mathrm{n})$. Why?
- Correctness: Suppose there is a better schedule.
- We can use k-1 machines
- The algorithm uses k
- Let i be first task scheduled on machine k
- Machine i must conflict with k -1 other tasks
- But that means there is no non-conflicting schedule using k -1 machines

Algorithm taskSchedule(T)
Input: set \boldsymbol{T} of tasks $\mathrm{w} /$ start time s_{i} and finish time f_{i}
Output: non-conflicting schedule with minimum number of machines $m \leftarrow 0 \quad$ \{no. of machines $\}$
while T is not empty remove task $i w /$ smallest s_{i} if there's a machine \boldsymbol{j} for \boldsymbol{i} then schedule i on machine j else
$m \leftarrow m+1$
schedule i on machine m

Example

- Given: a set T of n tasks, each having:

- A start time, s_{i}
- A finish time, $\mathrm{f}_{\mathrm{i}}\left(\right.$ where $\mathrm{s}_{\mathrm{i}}<\mathrm{f}_{\mathrm{i}}$)
- $[1,4],[1,3],[2,5],[3,7],[4,7],[6,9],[7,8]$ (ordered by start)
- Goal: Perform all tasks on min. number of machines

