
Pattern Matching 3/25/14 15:54

1

© 2014 Goodrich, Tamassia, Goldwasser Pattern Matching 1

Pattern Matching

1

a b a c a a b

234

a b a c a b

a b a c a b

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser Pattern Matching 2

Strings
! A string is a sequence of

characters
! Examples of strings:

n  Python program
n  HTML document
n  DNA sequence
n  Digitized image

! An alphabet Σ is the set of
possible characters for a
family of strings

! Example of alphabets:
n  ASCII
n  Unicode
n  {0, 1}
n  {A, C, G, T}

! Let P be a string of size m
n  A substring P[i .. j] of P is the

subsequence of P consisting of
the characters with ranks
between i and j

n  A prefix of P is a substring of
the type P[0 .. i]

n  A suffix of P is a substring of
the type P[i ..m - 1]

! Given strings T (text) and P
(pattern), the pattern matching
problem consists of finding a
substring of T equal to P

! Applications:
n  Text editors
n  Search engines
n  Biological research

Pattern Matching 3/25/14 15:54

2

© 2014 Goodrich, Tamassia, Goldwasser Pattern Matching 3

Brute-Force Pattern Matching
! The brute-force pattern

matching algorithm compares
the pattern P with the text T
for each possible shift of P
relative to T, until either
n  a match is found, or
n  all placements of the pattern

have been tried
! Brute-force pattern matching

runs in time O(nm)
! Example of worst case:

n  T = aaa … ah
n  P = aaah
n  may occur in images and

DNA sequences
n  unlikely in English text

Algorithm BruteForceMatch(T, P)
 Input text T of size n and pattern
 P of size m
 Output starting index of a
 substring of T equal to P or -1
 if no such substring exists
for i ← 0 to n - m

 { test shift i of the pattern }
 j ← 0
 while j < m ∧ T[i + j] = P[j]
 j ← j + 1
 if j = m
 return i {match at i}
 else
 break while loop {mismatch}

return -1 {no match anywhere}

© 2014 Goodrich, Tamassia, Goldwasser Pattern Matching 4

Boyer-Moore Heuristics
! The Boyer-Moore’s pattern matching algorithm is based on two

heuristics
 Looking-glass heuristic: Compare P with a subsequence of T
moving backwards
 Character-jump heuristic: When a mismatch occurs at T[i] = c

n  If P contains c, shift P to align the last occurrence of c in P with T[i]
n  Else, shift P to align P[0] with T[i + 1]

! Example

1

a p a t t e r n m a t c h i n g a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

2

3

4

5

6

7891011

Pattern Matching 3/25/14 15:54

3

© 2014 Goodrich, Tamassia, Goldwasser Pattern Matching 5

Last-Occurrence Function
! Boyer-Moore’s algorithm preprocesses the pattern P and the

alphabet Σ to build the last-occurrence function L mapping Σ to
integers, where L(c) is defined as
n  the largest index i such that P[i] = c or
n  -1 if no such index exists

! Example:
n  Σ = {a, b, c, d}
n  P = abacab

! The last-occurrence function can be represented by an array
indexed by the numeric codes of the characters

! The last-occurrence function can be computed in time O(m + s),
where m is the size of P and s is the size of Σ	

c a b c d
L(c) 4 5 3 -1

© 2014 Goodrich, Tamassia, Goldwasser Pattern Matching 6

m − j

i

j l

. a

. . . . b a

. . . . b a

j

Case 1: j ≤ 1 + l

The Boyer-Moore Algorithm
Algorithm BoyerMooreMatch(T, P, Σ)

 L ← lastOccurenceFunction(P, Σ)
 i ← m - 1
 j ← m - 1
 repeat

 if T[i] = P[j]
 if j = 0
 return i { match at i }
 else
 i ← i - 1
 j ← j - 1
 else
 { character-jump }
 l ← L[T[i]]
 i ← i + m – min(j, 1 + l)
 j ← m - 1

until i > n - 1
return -1 { no match }

m − (1 + l)

i

jl

. a

. a . . b .

. a . . b .

1 + l

Case 2: 1 + l ≤ j

Pattern Matching 3/25/14 15:54

4

© 2014 Goodrich, Tamassia, Goldwasser Pattern Matching 7

Example

1

a b a c a a b a d c a b a c a b a a b b

234

5

6

7

891012

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b
1113

© 2014 Goodrich, Tamassia, Goldwasser Pattern Matching 8

Analysis
! Boyer-Moore’s algorithm

runs in time O(nm + s)
! Example of worst case:

n  T = aaa … a
n  P = baaa

! The worst case may occur in
images and DNA sequences
but is unlikely in English text

! Boyer-Moore’s algorithm is
significantly faster than the
brute-force algorithm on
English text

11

1

a a a a a a a a a

23456
b a a a a a

b a a a a a

b a a a a a

b a a a a a

7891012

131415161718

192021222324

Pattern Matching 3/25/14 15:54

5

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation

Pattern Matching 9

© 2014 Goodrich, Tamassia, Goldwasser Pattern Matching 10

The KMP Algorithm
! Knuth-Morris-Pratt’s algorithm

compares the pattern to the
text in left-to-right, but shifts
the pattern more intelligently
than the brute-force algorithm.

! When a mismatch occurs, what
is the most we can shift the
pattern so as to avoid
redundant comparisons?

! Answer: the largest prefix of
P[0..j] that is a suffix of P[1..j]

x

j

. . a b a a b

a b a a b a

a b a a b a

No need to
repeat these
comparisons

Resume
comparing

here

Pattern Matching 3/25/14 15:54

6

© 2014 Goodrich, Tamassia, Goldwasser Pattern Matching 11

KMP Failure Function
! Knuth-Morris-Pratt’s

algorithm preprocesses the
pattern to find matches of
prefixes of the pattern with
the pattern itself

! The failure function F(j) is
defined as the size of the
largest prefix of P[0..j] that is
also a suffix of P[1..j]

! Knuth-Morris-Pratt’s
algorithm modifies the brute-
force algorithm so that if a
mismatch occurs at P[j] ≠ T[i]
we set j ← F(j - 1)

j 0 1 2 3 4 5
P[j] a b a a b a
F(j) 0 0 1 1 2 3

x

j

. . a b a a b

a b a a b a

F(j − 1)

a b a a b a

© 2014 Goodrich, Tamassia, Goldwasser Pattern Matching 12

The KMP Algorithm
! The failure function can be

represented by an array and
can be computed in O(m) time

! At each iteration of the while-
loop, either
n  i increases by one, or
n  the shift amount i - j

increases by at least one
(observe that F(j - 1) < j)

! Hence, there are no more
than 2n iterations of the while-
loop

! Thus, KMP’s algorithm runs in
optimal time O(m + n)

Algorithm KMPMatch(T, P)
 F ← failureFunction(P)
 i ← 0
 j ← 0
 while i < n

 if T[i] = P[j]
 if j = m - 1
 return i - j { match }
 else
 i ← i + 1
 j ← j + 1
 else
 if j > 0
 j ← F[j - 1]
 else
 i ← i + 1

return -1 { no match }

Pattern Matching 3/25/14 15:54

7

© 2014 Goodrich, Tamassia, Goldwasser Pattern Matching 13

Computing the Failure
Function
! The failure function can be

represented by an array and
can be computed in O(m) time

! The construction is similar to
the KMP algorithm itself

! At each iteration of the while-
loop, either
n  i increases by one, or
n  the shift amount i - j

increases by at least one
(observe that F(j - 1) < j)

! Hence, there are no more
than 2m iterations of the
while-loop

Algorithm failureFunction(P)
 F[0] ← 0
 i ← 1
 j ← 0
 while i < m

 if P[i] = P[j]
 {we have matched j + 1 chars}
 F[i] ← j + 1
 i ← i + 1
 j ← j + 1
 else if j > 0 then
 {use failure function to shift P}
 j ← F[j - 1]
 else
 F[i] ← 0 { no match }
 i ← i + 1

© 2014 Goodrich, Tamassia, Goldwasser Pattern Matching 14

Example

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

j 0 1 2 3 4 5
P[j] a b a c a b
F(j) 0 0 1 0 1 2

Pattern Matching 3/25/14 15:54

8

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation

Pattern Matching 15

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation, 2

Pattern Matching 16

