Presentation for use with the textbook Data Structures and Algorithms in Java, $6{ }^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Pattern Matching

Strings

- A string is a sequence of characters
- Examples of strings:
- Python program
- HTML document
- DNA sequence
- Digitized image
- An alphabet Σ is the set of possible characters for a family of strings
- Example of alphabets:
- ASCII
- Unicode
- $\{0,1\}$
- $\{A, C, G, T\}$
© 2014 Goodrich, Tamassia, Goldwasser
- A substring $P[i . . j]$ of P is the subsequence of P consisting of the characters with ranks between i and j
- A prefix of \boldsymbol{P} is a substring of the type $P[0$.. $i]$
- A suffix of P is a substring of the type $P[i . . m-1]$
- Given strings \boldsymbol{T} (text) and \boldsymbol{P} (pattern), the pattern matching problem consists of finding a substring of T equal to P
- Applications:
- Text editors
- Search engines
- Biological research

Brute-Force Pattern Matching

- The brute-force pattern matching algorithm compares the pattern \boldsymbol{P} with the text \boldsymbol{T} for each possible shift of \boldsymbol{P} relative to T, until either

Algorithm BruteForceMatch(T, P)
Input text \boldsymbol{T} of size \boldsymbol{n} and pattern \boldsymbol{P} of size \boldsymbol{m}
Output starting index of a substring of \boldsymbol{T} equal to \boldsymbol{P} or -1 if no such substring exists
for $i \leftarrow 0$ to $n-m$
\{ test shift \boldsymbol{i} of the pattern \}
$j \leftarrow 0$
while $j<m \wedge T[i+j]=P[j]$ $j \leftarrow j+1$
if $\boldsymbol{j}=\boldsymbol{m}$
return i \{match at $i\}$
else
break while loop \{mismatch\}
return $\mathbf{- 1}$ \{no match anywhere\}

Boyer-Moore Heuristics

- The Boyer-Moore's pattern matching algorithm is based on two heuristics
Looking-glass heuristic: Compare \boldsymbol{P} with a subsequence of \boldsymbol{T} moving backwards
Character-jump heuristic: When a mismatch occurs at $T[i]=c$
- If \boldsymbol{P} contains c, shift \boldsymbol{P} to align the last occurrence of c in P with $T[i]$
- Else, shift P to align $P[0]$ with $T[i+1]$
- Example

a		p	a	t	t	e	r	n		m	a	t	c	h	i	n	g		a	l	g	o	r	i	t	h	m

Last-Occurrence Function

- Boyer-Moore's algorithm preprocesses the pattern \boldsymbol{P} and the alphabet Σ to build the last-occurrence function L mapping Σ to integers, where $L(c)$ is defined as
- the largest index \boldsymbol{i} such that $P[i]=c$ or
- -1 if no such index exists
- Example:
- $\Sigma=\{a, b, c, d\}$
- $P=a b a c a b$

\boldsymbol{c}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}
$\boldsymbol{L}(\boldsymbol{c})$	4	5	3	-1

- The last-occurrence function can be represented by an array indexed by the numeric codes of the characters
- The last-occurrence function can be computed in time $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{s})$, where \boldsymbol{m} is the size of \boldsymbol{P} and s is the size of $\boldsymbol{\Sigma}$

The Boyer-Moore Algorithm

Algorithm BoyerMooreMatch (T, P, Σ)
$L \leftarrow$ lastOccurenceFunction (P, Σ)
$i \leftarrow m-1$
$j \leftarrow m-1$
repeat
if $T[i]=P[j]$
if $j=0$
return i \{ match at \boldsymbol{i} \}
else
$i \leftarrow i-1$
$j \leftarrow j-1$
else
\{ character-jump \}
$l \leftarrow L[T[i]]$
$\boldsymbol{i} \leftarrow \boldsymbol{i}+\boldsymbol{m}-\min (\boldsymbol{j}, 1+\boldsymbol{l})$
$j \leftarrow m-1$
until $i>n-1$
return -1 \{no match \}
Case 2: $1+\boldsymbol{l} \leq \boldsymbol{j}$

6

Example

$$
\begin{array}{|l|}
\hline a & b & a & c & a & a & b & a & d & c & a & b & a & c & a & b & a & a & b & b \\
\hline
\end{array}
$$

$$
\begin{array}{|l|l|l|l|l|l|}
\hline a & b & a & c & a & b \\
\hline
\end{array}
$$

Analysis

- Boyer-Moore' s algorithm runs in time $\boldsymbol{O}(\boldsymbol{n m}+\boldsymbol{s})$

| a |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Example of worst case:
- $T=a a a \ldots a$
- $P=b a a a$
- The worst case may occur in images and DNA sequences but is unlikely in English text
- Boyer-Moore' s algorithm is significantly faster than the brute-force algorithm on
 English text

Java Implementation

```
/** Returns the lowest index at which substring pattern begins in text (or else -1).*/
public static int findBoyerMoore(char[ ] text, char[ ] pattern) {
    int n = text.length;
    int m = pattern.length;
    if (m== 0) return 0; // trivial search for empty string
    Map<Character,Integer> last = new HashMap<>(); // the 'last' map
    for (int i=0; i < n; i++)
        last.put(text[i], -1); // set -1 as default for all text characters
    for (int k=0;k<m;k++)
        last.put(pattern[k], k); // rightmost occurrence in pattern is last
    // start with the end of the pattern aligned at index m-1 of the text
    int i=m-1; // an index into the text
    int k=m-1; // an index into the pattern
    while (i<n) {
        if (text[i] == pattern[k]) { // a matching character
            if (k==0) return i; // entire pattern has been found
            i--; // otherwise, examine previous
            k--; // characters of text/pattern
        } else {
            i +=m - Math.min(k,1 + last.get(text[i])); // case analysis for jump step
            k}=\textrm{m}-1; // restart at end of patter
        }
    }
    return -1; // pattern was never found
```

 \}
 | (C) 2014 Goodrich, Tamassia, Goldwasser | Pattern Matching | 9 |
| :--- | :--- | :--- |

The KMP Algorithm

- Knuth-Morris-Pratt's algorithm compares the pattern to the text in left-to-right, but shifts the pattern more intelligently than the brute-force algorithm.
- When a mismatch occurs, what is the most we can shift the pattern so as to avoid redundant comparisons?
- Answer: the largest prefix of $P[0 . . j]$ that is a suffix of $P[1 . . j]$

KMP Failure Function

- Knuth-Morris-Pratt’s algorithm preprocesses the pattern to find matches of prefixes of the pattern with the pattern itself
- The failure function $F(j)$ is defined as the size of the largest prefix of $P[0 . . j]$ that is also a suffix of $P[1 . . j]$
- Knuth-Morris-Pratt's algorithm modifies the bruteforce algorithm so that if a mismatch occurs at $P[j] \neq T[i]$ we set $\boldsymbol{j} \leftarrow \boldsymbol{F}(\boldsymbol{j}-1)$

\boldsymbol{j}	0	1	2	3	4	5
$\boldsymbol{P}[\boldsymbol{j}]$	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{a}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{a}
$\boldsymbol{F}(\boldsymbol{j})$	0	0	1	1	2	3

| a | b | a | a | b | x | \cdot | \cdot | \cdot | \cdot | \cdot |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{a}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{a}
$\boldsymbol{F}(\boldsymbol{j}-1)$!					

The KMP Algorithm

- The failure function can be represented by an array and can be computed in $\boldsymbol{O}(\boldsymbol{m})$ time
- At each iteration of the whileloop, either
- i increases by one, or
- the shift amount $\boldsymbol{i}-\boldsymbol{j}$ increases by at least one (observe that $\boldsymbol{F}(\boldsymbol{j}-1)<\boldsymbol{j}$)
- Hence, there are no more than $2 \boldsymbol{n}$ iterations of the whileloop
- Thus, KMP's algorithm runs in optimal time $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$

```
Algorithm KMPMatch(T, P)
    \(F \leftarrow\) failureFunction \((P)\)
    \(i \leftarrow 0\)
    \(j \leftarrow 0\)
    while \(i<n\)
        if \(T[i]=P[j]\)
            if \(\boldsymbol{j}=\boldsymbol{m}-1\)
                return \(\boldsymbol{i}-\boldsymbol{j}\) \{ match \}
            else
            \(i \leftarrow i+1\)
            \(j \leftarrow j+1\)
        else
            if \(j>0\)
            \(j \leftarrow F[j-1]\)
            else
            \(i \leftarrow i+1\)
    return -1 \{ no match \}
```


Computing the Failure Function

- The failure function can be represented by an array and can be computed in $\boldsymbol{O}(\boldsymbol{m})$ time
- The construction is similar to the KMP algorithm itself
- At each iteration of the whileloop, either
- i increases by one, or
- the shift amount $\boldsymbol{i}-\boldsymbol{j}$ increases by at least one (observe that $F(j-1)<j$)
- Hence, there are no more than $2 \boldsymbol{m}$ iterations of the while-loop

```
Algorithm failureFunction( \(P\) )
    \(F[0] \leftarrow 0\)
    \(i \leftarrow 1\)
    \(j \leftarrow 0\)
    while \(i<m\)
        if \(P[i]=P[j]\)
        \{we have matched \(\boldsymbol{j}+1\) chars \}
        \(F[i] \leftarrow j+1\)
        \(i \leftarrow i+1\)
        \(j \leftarrow j+1\)
        else if \(j>0\) then
        \{use failure function to shift \(\boldsymbol{P}\) \}
        \(j \leftarrow F[j-1]\)
    else
        \(F[i] \leftarrow 0\) \{ no match \}
        \(i \leftarrow i+1\)
```


Example

$$
\begin{array}{|l|}
\hline a & b & a & c & a & a & b & a & c & c & a & b & a & c & a & b & a & a & b & b \\
\hline
\end{array}
$$

\[

\]

\boldsymbol{j}	0	1	2	3	4	5
$\boldsymbol{P}[\boldsymbol{j}]$	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{a}	\boldsymbol{c}	\boldsymbol{a}	\boldsymbol{b}
$\boldsymbol{F}(\boldsymbol{j})$	0	0	1	0	1	2

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|}
\hline 13 & \\
\hline \boldsymbol{a} & \boldsymbol{b} & \boldsymbol{a} & \boldsymbol{c} & \boldsymbol{a} & \boldsymbol{b} \\
\hline
\end{array} \\
& \begin{array}{llllllll}
14 & 15 & 16 & 17 & 18 & 19
\end{array} \\
& \begin{array}{|l|l|l|l|l|l|}
\hline a & b & a & c & a & b \\
\hline
\end{array}
\end{aligned}
$$

Java Implementation

```
/** Returns the lowest index at which substring pattern begins in text (or else -1).*/
public static int findKMP(char[] text, char[] pattern) {
    int n = text.length;
    int m = pattern.length;
    if (m == 0) return 0;
    int[] fail = computeFailKMP(pattern); // computed by private utility
    int j = 0;
    int k = 0;
    while (j<n) {
        if (text[j] == pattern[k]) { // pattern[0..k] matched thus far
            if (k==m-1) return j - m +1; // match is complete
            j++; // otherwise, try to extend match
            k++;
        } else if (k>0)
            k= fail[k-1]; // reuse suffix of P[0..k-1]
            else
            j++;
    }
    return -1; // reached end without match
}
// trivial search for empty string
// index into text
    // index into pattern
```


Java Implementation, 2

```
private static int[ ] computeFailKMP(char[ ] pattern) {
    int m = pattern.length;
    int[ ] fail = new int[m]; // by default, all overlaps are zero
    int j = 1;
    int k=0;
    while (j<m) { // compute fail[j] during this pass, if nonzero
        if (pattern[j] == pattern[k]) { // k+1 characters match thus far
            fail[j] = k + 1;
            j++;
            k++;
            } else if (k>0) // k follows a matching prefix
                k= fail[k-1];
            else // no match found starting at j
            j++;
    }
    return fail;
}
```

