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Strings 
! A string is a sequence of 

characters 
! Examples of strings: 

n  Python program 
n  HTML document 
n  DNA sequence 
n  Digitized image 

! An alphabet Σ is the set of 
possible characters for a 
family of strings 

! Example of alphabets: 
n  ASCII 
n  Unicode 
n  {0, 1} 
n  {A, C, G, T} 

! Let P be a string of size m  
n  A substring P[i .. j] of P is the 

subsequence of P consisting of 
the characters with ranks 
between i and j 

n  A prefix of P is a substring of 
the type P[0 .. i] 

n  A suffix of P is a substring of 
the type P[i ..m - 1]  

! Given strings T (text) and P 
(pattern), the pattern matching 
problem consists of finding a 
substring of T equal to P 

! Applications: 
n  Text editors 
n  Search engines 
n  Biological research 
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Brute-Force Pattern Matching 
! The brute-force pattern 

matching algorithm compares 
the pattern P with the text T 
for each possible shift of P 
relative to T, until either 
n  a match is found, or 
n  all placements of the pattern 

have been tried 
! Brute-force pattern matching 

runs in time O(nm)  
! Example of worst case: 

n  T = aaa … ah 
n  P = aaah 
n  may occur in images and 

DNA sequences 
n  unlikely in English text 

Algorithm BruteForceMatch(T, P) 
 Input text T of size n and pattern  
  P of size m 
 Output starting index of a  
  substring of T equal to P or -1  
  if no such substring exists  
for  i ← 0 to n - m 

 { test shift i of the pattern } 
 j ← 0 
 while j < m ∧ T[i + j] = P[j] 
  j ← j + 1 
 if  j = m 
  return  i {match at i} 
 else 
  break while loop {mismatch} 

return  -1 {no match anywhere} 
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Boyer-Moore Heuristics 
! The Boyer-Moore’s pattern matching algorithm is based on two 

heuristics 
 Looking-glass heuristic: Compare P with a subsequence of T 
moving backwards 
 Character-jump heuristic: When a mismatch occurs at T[i] = c  

n  If P contains c, shift P to align the last occurrence of c in P with T[i]  
n  Else, shift P to align P[0] with T[i + 1] 

! Example  

1

a p a t t e r n m a t c h i n g a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

2

3

4

5

6

7891011



Pattern Matching 3/25/14 15:54 

3 

© 2014 Goodrich, Tamassia, Goldwasser Pattern Matching 5 

Last-Occurrence Function 
! Boyer-Moore’s algorithm preprocesses the pattern P and the 

alphabet Σ to build the last-occurrence function L mapping Σ to 
integers, where L(c) is defined as 
n  the largest index i such that P[i] = c or 
n  -1 if no such index exists  

! Example: 
n  Σ = {a, b, c, d} 
n  P = abacab 

! The last-occurrence function can be represented by an array 
indexed by the numeric codes of the characters 

! The last-occurrence function can be computed in time O(m + s), 
where m is the size of P and s is the size of Σ	


c a b c d 
L(c) 4 5 3 -1 
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m − j

i

j l

. . . . . . a . . . . . .

. . . . b a

. . . . b a

j

Case 1:  j ≤ 1 + l 

The Boyer-Moore Algorithm 
Algorithm BoyerMooreMatch(T, P, Σ) 

 L ← lastOccurenceFunction(P, Σ ) 
 i ← m - 1 
 j ← m - 1 
 repeat  

 if T[i] = P[j] 
  if  j = 0 
   return  i  { match at i } 
  else 
   i ← i - 1 
   j ← j - 1 
 else 
  { character-jump } 
  l ← L[T[i]]   
  i ← i + m – min(j, 1 + l) 
  j ← m - 1 

until  i > n - 1 
return  -1 { no match } 

m − (1 + l)

i

jl

. . . . . . a . . . . . .

. a . . b .

. a . . b .

1 + l

Case 2: 1 + l ≤ j 
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Analysis 
! Boyer-Moore’s algorithm 

runs in time O(nm + s) 
! Example of worst case: 

n  T = aaa … a 
n  P = baaa 

! The worst case may occur in 
images and DNA sequences 
but is unlikely in English text 

! Boyer-Moore’s algorithm is 
significantly faster than the 
brute-force algorithm on 
English text 
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The KMP Algorithm 
! Knuth-Morris-Pratt’s algorithm 

compares the pattern to the 
text in left-to-right, but shifts 
the pattern more intelligently 
than the brute-force algorithm.  

! When a mismatch occurs, what 
is the most we can shift the 
pattern so as to avoid 
redundant comparisons? 

! Answer: the largest prefix of 
P[0..j] that is a suffix of P[1..j] 

x 

j 

. . a b a a b . . . . . 

a b a a b a 

a b a a b a 

No need to 
repeat these 
comparisons 

Resume 
comparing 

here 
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KMP Failure Function 
! Knuth-Morris-Pratt’s 

algorithm preprocesses the 
pattern to find matches of 
prefixes of the pattern with 
the pattern itself 

! The failure function F(j) is 
defined as the size of the 
largest prefix of P[0..j] that is 
also a suffix of P[1..j] 

! Knuth-Morris-Pratt’s 
algorithm modifies the brute-
force algorithm so that if a 
mismatch occurs at P[j] ≠ T[i] 
we set  j ← F(j - 1) 

j 0 1 2 3 4 5 
P[j] a b a a b a 
F(j) 0 0 1 1 2 3 

x

j

. . a b a a b . . . . .

a b a a b a

F(j − 1)

a b a a b a
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The KMP Algorithm 
! The failure function can be 

represented by an array and 
can be computed in O(m) time 

! At each iteration of the while-
loop, either 
n  i increases by one, or 
n  the shift amount i - j 

increases by at least one 
(observe that F(j - 1) < j) 

! Hence, there are no more 
than 2n iterations of the while-
loop 

! Thus, KMP’s algorithm runs in 
optimal time O(m + n) 

Algorithm KMPMatch(T, P) 
 F ← failureFunction(P) 
 i ← 0 
 j ← 0 
 while i < n 

 if T[i] = P[j] 
  if  j = m - 1 
   return  i - j { match } 
  else 
   i ← i + 1 
   j ← j + 1 
 else 
  if  j > 0 
   j ← F[j - 1] 
  else 
   i ← i + 1 

return  -1 { no match } 
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Computing the Failure 
Function 
! The failure function can be 

represented by an array and 
can be computed in O(m) time 

! The construction is similar to 
the KMP algorithm itself 

! At each iteration of the while-
loop, either 
n  i increases by one, or 
n  the shift amount i - j 

increases by at least one 
(observe that F(j - 1) < j) 

! Hence, there are no more 
than 2m iterations of the 
while-loop 

Algorithm failureFunction(P) 
 F[0] ← 0 
 i ← 1 
 j ← 0 
 while i < m 

 if P[i] = P[j] 
  {we have matched j + 1 chars} 
  F[i] ←  j + 1 
  i ← i + 1 
  j ← j + 1 
 else if  j > 0 then 
  {use failure function to shift P} 
  j ← F[j - 1] 
 else 
  F[i] ← 0 { no match } 
  i ← i + 1 
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Example 
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c

j 0 1 2 3 4 5 
P[j] a b a c a b 
F(j) 0 0 1 0 1 2 



Pattern Matching 3/25/14 15:54 

8 

© 2014 Goodrich, Tamassia, Goldwasser 

Java Implementation 

Pattern Matching 15 

© 2014 Goodrich, Tamassia, Goldwasser 

Java Implementation, 2 

Pattern Matching 16 


