Presentation for use with the textbook Data Structures and Algorithms in Java, $6^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Breadth-First Search

Breadth-First Search

- Breadth-first search (BFS) is a general technique for traversing a graph
- A BFS traversal of a graph G
- Visits all the vertices and edges of G
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G
- BFS on a graph with n vertices and m edges takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- BFS can be further extended to solve other graph problems
- Find and report a path with the minimum number of edges between two given vertices
- Find a simple cycle, if there is one

BFS Algorithm

- The algorithm uses a mechanism for setting and getting "labels" of vertices and edges
Algorithm $\operatorname{BFS}(G)$
Input graph \boldsymbol{G}
Output labeling of the edges
and partition of the vertices of \boldsymbol{G}
for all $u \in G$.vertices()
setLabel(u, UNEXPLORED)
for all $e \in$ G.edges()
setLabel(e, UNEXPLORED)
for all $v \in G$.vertices()
if $\operatorname{getLabel}(v)=$ UNEXPLORED BFS (G, v)
Algorithm $\operatorname{BFS}(G, s)$
Algorithm $\operatorname{BFS}(G, s)$
$L_{0} \leftarrow$ new empty sequence
$L_{0} \leftarrow$ new empty sequence
$L_{0} \cdot \operatorname{addLast}(s)$
$L_{0} \cdot \operatorname{addLast}(s)$
setLabel(s, VISITED)
setLabel(s, VISITED)
$i \leftarrow 0$
$i \leftarrow 0$
while $\neg L_{i}$ isEmpty ()
while $\neg L_{i}$ isEmpty ()
$L_{i+1} \leftarrow$ new empty sequence
$L_{i+1} \leftarrow$ new empty sequence
for all $v \in L_{i}$ elements()
for all $v \in L_{i}$ elements()
for all $e \in$ G.incidentEdges(v)
for all $e \in$ G.incidentEdges(v)
if $\operatorname{getLabel}(e)=$ UNEXPLORED
if $\operatorname{getLabel}(e)=$ UNEXPLORED
$w \leftarrow$ opposite (v, e)
$w \leftarrow$ opposite (v, e)
if $\operatorname{getLabel}(w)=$ UNEXPLORED
if $\operatorname{getLabel}(w)=$ UNEXPLORED
setLabel(e, DISCOVERY)
setLabel(e, DISCOVERY)
setLabel(w, VISITED)
setLabel(w, VISITED)
$L_{i+1} . \operatorname{addLast}(w)$
$L_{i+1} . \operatorname{addLast}(w)$
else
else
setLabel(e, CROSS)
setLabel(e, CROSS)
$i \leftarrow i+1$
$i \leftarrow i+1$

Java Implementation

```
/** Performs breadth-first search of Graph g starting at Vertex u. */
public static <V,E> void BFS(Graph<V,E>g, Vertex<V}>>\textrm{s}\mathrm{ ,
                Set<Vertex<V }>>>\mathrm{ known,Map<Vertex<V > ,Edge<E >> forest) {
    PositionalList<Vertex<V >> level = new LinkedPositionalList <> ();
    known.add(s);
    level.addLast(s); // first level includes only s
    while (!level.isEmpty()) {
        PositionalList<Vertex<V>> nextLevel = new LinkedPositionalList<>();
        for (Vertex<V}>\textrm{u}:\mathrm{ : level)
            for (Edge<E> e : g.outgoingEdges(u)) {
            Vertex<V > v = g.opposite(u, e);
            if (!known.contains(v)) {
                known.add(v);
                forest.put(v, e); // e is the tree edge that discovered v
                nextLevel.addLast(v); // v will be further considered in next pass
            }
            }
        level = nextLevel; // relabel 'next' level to become the current
    }
}
```


Example

(A) unexplored vertex
(A) visited vertex
-_ unexplored edge
\longrightarrow discovery edge

- - - cross edge

Example (cont.)

Example (cont.)

7

Properties

Notation

$\boldsymbol{G}_{\boldsymbol{s}}$: connected component of s
Property 1
$\boldsymbol{B F S}(\boldsymbol{G}, \boldsymbol{s})$ visits all the vertices and edges of $\boldsymbol{G}_{\boldsymbol{s}}$
Property 2

The discovery edges labeled by
$\boldsymbol{B F S}(\boldsymbol{G}, \boldsymbol{s})$ form a spanning tree \boldsymbol{T}_{s} of \boldsymbol{G}_{s}
Property 3
For each vertex \boldsymbol{v} in \boldsymbol{L}_{i}

- The path of T_{s} from s to v has i edges
- Every path from s to v in \boldsymbol{G}_{s} has at least i edges

Analysis

- Setting/getting a vertex/edge label takes $\boldsymbol{O}(1)$ time
- Each vertex is labeled twice
- once as UNEXPLORED
- once as VISITED
- Each edge is labeled twice
- once as UNEXPLORED
- once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence \boldsymbol{L}_{i}
- Method incidentEdges is called once for each vertex
- BFS runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time provided the graph is represented by the adjacency list structure
- Recall that $\boldsymbol{\Sigma}_{v} \operatorname{deg}(v)=2 \boldsymbol{m}$

Applications

- Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- Compute the connected components of \boldsymbol{G}
- Compute a spanning forest of \boldsymbol{G}
- Find a simple cycle in \boldsymbol{G}, or report that \boldsymbol{G} is a forest
- Given two vertices of \boldsymbol{G}, find a path in \boldsymbol{G} between them with the minimum number of edges, or report that no such path exists

DFS vs. BFS

DFS vs. BFS (cont.)

Back edge ($\boldsymbol{v}, \boldsymbol{w}$)

- w is an ancestor of v in the tree of discovery edges

DFS

Cross edge ($\boldsymbol{v}, \boldsymbol{w}$)

- w is in the same level as v or in the next level

BFS

