Presentation for use with the textbook Data Structures and Algorithms in Java, $6^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Directed Graphs

Digraphs

- A digraph is a graph whose edges are all directed
- Short for "directed graph"
- Applications
- one-way streets
- flights
- task scheduling

Digraph Properties

- A graph $G=(V, E)$ such that
- Each edge goes in one direction:

- Edge (a, b) goes from a to b , but not b to a
- If G is simple, $\boldsymbol{m} \leq \boldsymbol{n} \cdot(\boldsymbol{n}-1)$
- If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of incoming edges and outgoing edges in time proportional to their size

Digraph Application

- Scheduling: edge (a,b) means task a must be completed before b can be started

Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction
- In the directed DFS algorithm, we have four types of edges
- discovery edges
- back edges
- forward edges
- cross edges
- A directed DFS starting at a vertex s determines the vertices
 reachable from s

Reachability

- DFS tree rooted at v: vertices reachable from v via directed paths

Strong Connectivity

- Each vertex can reach all other vertices

Strong Connectivity Algorithm

- Pick a vertex v in G
- Perform a DFS from v in G
- If there's a w not visited, print "no"
- Let G^{\prime} be G with edges reversed
- Perform a DFS from v in G^{\prime}
- If there's a w not visited, print "no"
- Else, print "yes"
- Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$

Strongly Connected Components

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- Can also be done in $O(n+m)$ time using DFS, but is more complicated (similar to biconnectivity).

Transitive Closure

- Given a digraph G, the transitive closure of \boldsymbol{G} is the digraph G^{*} such that
- G^{*} has the same vertices as \boldsymbol{G}
- if \boldsymbol{G} has a directed path from u to $v(u \neq v), G^{*}$ has a directed edge from u to v
- The transitive closure provides reachability information about a digraph

Computing the Transitive Closure

- We can perform DFS starting at each vertex
- $O(n(n+m))$

Floyd-Warshall Transitive Closure

- Idea \#1: Number the vertices $1,2, \ldots, n$.
- Idea \#2: Consider paths that use only
 vertices numbered $1,2, \ldots, k$, as intermediate vertices:

Floyd-Warshall' s Algorithm

- Number vertices $\boldsymbol{v}_{1}, \ldots, v_{n}$
- Compute digraphs $\boldsymbol{G}_{0}, \ldots, \boldsymbol{G}_{n}$
- $\boldsymbol{G}_{0}=\boldsymbol{G}$
- G_{k} has directed edge $\left(v_{v} v_{j}\right)$ if G has a directed path from v_{i} to v_{i} with intermediate vertices in $\left\{v_{1}, \ldots, v_{k}\right\}$
- We have that $\boldsymbol{G}_{\boldsymbol{n}}=\boldsymbol{G}^{*}$
- In phase \boldsymbol{k}, digraph $\boldsymbol{G}_{\boldsymbol{k}}$ is computed from $\boldsymbol{G}_{\boldsymbol{k}-1}$
- Running time: $\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$, assuming areAdjacent is $\boldsymbol{O}(1)$ (e.g., adjacency matrix)

```
Algorithm FloydWarshall(G)
    Input digraph G
    Output transitive closure G* of G
    i\leftarrow1
    for all v\inG.vertices()
        denotev}\mathrm{ as vi
        i\leftarrowi+1
    G}\mp@subsup{G}{0}{}\leftarrow
    for }k\leftarrow1\mathrm{ to }n\mathrm{ do
        G}\mp@subsup{G}{k}{\leftarrow\leftarrowG
        fori\leftarrow1 to n(i\not=k) do
            for }j\leftarrow1\mathrm{ to }n(j\not=i,k)\mathrm{ do
                if G}\mp@subsup{G}{k-1}{
                    G}\mp@subsup{|}{k-1}{
                        if }\neg\mp@subsup{G}{k}{}\mathrm{ areAdjacent (v,v
                        G}\mp@subsup{|}{k}{}\mp@subsup{\mathrm{ insertDirectedEdge( }}{v}{
        return Gn
```


Java Implementation

```
/** Converts graph g into its transitive closure. */
public static <V,E> void transitiveClosure(Graph<V,E>g) {
    for (Vertex<V> k : g.vertices())
        for (Vertex<V> i : g.vertices())
            // verify that edge (i,k) exists in the partial closure
            if (i != k && g.getEdge(i,k) != null)
                for (Vertex<V> j : g.vertices())
                    // verify that edge (k,j) exists in the partial closure
                    if (i != j && j != k && g.getEdge(k,j) != null)
                        // if (i,j) not yet included, add it to the closure
                    if (g.getEdge(i,j) == null)
                        g.insertEdge(i, j, null);
}
```


Floyd-Warshall, Iteration 1
v_{7}

Floyd-Warshall, Iteration 3

DAGs and Topological Ordering

- A directed acyclic graph (DAG) is a digraph that has no directed cycles
- A topological ordering of a digraph is a numbering

$$
v_{1}, \ldots, v_{n}
$$

of the vertices such that for every edge (v_{i}, v_{j}), we have $i<j$

- Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints
Theorem
A digraph admits a topological ordering if and only if it is a DAG

Topological Sorting

- Number vertices, so that (u, v) in E implies $u<v$

Algorithm for Topological Sorting

- Note: This algorithm is different than the one in the book

```
Algorithm TopologicalSort( \(\boldsymbol{G}\) )
    \(\boldsymbol{H} \leftarrow \boldsymbol{G} \quad / /\) Temporary copy of \(\boldsymbol{G}\)
    \(n \leftarrow\) G.numVertices()
    while \(H\) is not empty do
        Let \(\boldsymbol{v}\) be a vertex with no outgoing edges
        Label \(v \leftarrow n\)
        \(n \leftarrow n-1\)
        Remove \(v\) from \(\boldsymbol{H}\)
```

 Running time: \(\mathrm{O}(\mathrm{n}+\mathrm{m})\)

Implementation with DFS

- Simulate the algorithm by using depth-first search
- $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time.

Algorithm topologicalDFS(G)
Input dag G
Output topological ordering of \boldsymbol{G} $n \leftarrow$ G.numVertices()
for all $u \in G$.vertices() setLabel(u, UNEXPLORED)
for all $v \in G$.vertices() if $\operatorname{getLabel}(\nu)=$ UNEXPLORED topologicalDFS(G, v)

```
Algorithm topologicalDFS(G,v)
    Input graph G}\mathrm{ and a start vertex v}\mathrm{ of }\boldsymbol{G
    Output labeling of the vertices of G
        in the connected component of v
    setLabel(v, VISITED)
    for all e\inG.outEdges(v)
        { outgoing edges }
        w}\leftarrow\mathrm{ opposite( (v,e)
        if getLabel(w)= UNEXPLORED
            {e is a discovery edge }
            topologicalDFS(G,w)
        else
            {e is a forward or cross edge }
    Label v}\mathrm{ with topological number }\boldsymbol{n
    n}\leftarrown-
```


Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

Java Implementation

```
/** Returns a list of verticies of directed acyclic graph g in topological order. */
public static <V,E> PositionalList<Vertex<V>> topologicalSort(Graph<V,E> g) {
    // list of vertices placed in topological order
    PositionalList<Vertex<V>> topo = new LinkedPositionalList<>();
    |/ container of vertices that have no remaining constraints
    Stack<Vertex<V>> ready = new LinkedStack<>();
    // map keeping track of remaining in-degree for each vertex
    Map<Vertex<V>, Integer> inCount = new ProbeHashMap<>>();
    for (Vertex<V> u : g.vertices()) {
        inCount.put(u, g.inDegree(u)); // initialize with actual in-degree
        if (inCount.get(u) ===0) // if u has no incoming edges,
            ready.push(u); // it is free of constraints
    }
    while (!ready.isEmpty()) {
        Vertex<V> u = ready.pop();
        topo.addLast(u);
        for (Edge<E>e : g.outgoingEdges(u)) { // consider all outgoing neighbors of u
            Vertex<V> v = g.opposite(u,e);
            inCount.put(v, inCount.get(v) - 1); // v has one less constraint without u
            if (inCount.get(v) == 0)
                ready.push(v);
    }
    }
    return topo;
}
```

