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Union-Find Partition Structures 

Presentation for use with the textbook Data Structures and 
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, 
and M. H. Goldwasser, Wiley, 2014 
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Partitions with Union-Find 
Operations 

! makeSet(x): Create a singleton set containing 
the element x and return the position storing x 
in this set 

! union(A,B ): Return the set A U B, destroying 
the old A and B 

! find(p): Return the set containing the element 
at position p 
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List-based Implementation 
! Each set is stored in a sequence represented 

with a linked-list 
! Each node should store an object containing 

the element and a reference to the set name 
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Analysis of List-based 
Representation 

! When doing a union, always move 
elements from the smaller set to the 
larger set 
n  Each time an element is moved it goes to a 

set of size at least double its old set 
n  Thus, an element can be moved at most 

O(log n) times 

! Total time needed to do n unions and 
finds is O(n log n). 
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Tree-based Implementation 
! Each element is stored in a node, which contains a 

pointer to a set name 
! A node v whose set pointer points back to v is also a 

set name 
! Each set is a tree, rooted at a node with a self-

referencing set pointer 
! For example: The sets “1”, “2”, and “5”: 

1 

7 4 

2 

6 3 

5 

10 8 

12 

11 9 

© 2014 Goodrich, Tamassia, Goldwasser Union-Find 6 

Union-Find Operations 
! To do a union, simply 

make the root of one tree 
point to the root of the 
other  

 
 
! To do a find, follow set-

name pointers from the 
starting node until 
reaching a node whose 
set-name pointer refers 
back to itself 
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Union-Find Heuristic 1 
! Union by size:  

n  When performing a union, 
make the root of smaller tree 
point to the root of the larger 

! Implies O(n log n) time for 
performing n union-find 
operations: 
n  Each time we follow a pointer, 

we are going to a subtree of 
size at least double the size of 
the previous subtree 

n  Thus, we will follow at most 
O(log n) pointers for any find.  
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! Path compression:  
n  After performing a find, compress all the pointers on the path 

just traversed so that they all point to the root 

 

! Implies O(n log* n) time for performing n union-find 
operations: 
n  Proof is somewhat involved… (and not in the book) 

Union-Find Heuristic 2 
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Java Implementation 

Union-Find 9 
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Java Implementation, 2 
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Proof of log* n Amortized Time 
! For each node v that is a root 

n  define n(v) to be the size of the subtree rooted at v 
(including v) 

n  identified a set with the root of its associated tree. 
! We update the size field of v each time a set is 

unioned into v. Thus, if v is not a root, then n(v) is 
the largest the subtree rooted at v can be, which 
occurs just before we union v into some other node 
whose size is at least as large as v ’s.  

! For any node v, then, define the rank of v, which we 
denote as r (v), as r (v) = [log n(v)]: 

! Thus, n(v) ≥ 2r(v).  
! Also, since there are at most n nodes in the tree of v, 

r (v) = [log n], for each node v. 
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Proof of log* n Amortized Time (2) 
! For each node v with parent w: 

n  r (v ) > r (w ) 

! Claim: There are at most n/ 2s nodes of rank s. 
! Proof:  

n  Since r (v) < r (w), for any node v with parent w, ranks are 
monotonically increasing as we follow parent pointers up any 
tree.  

n  Thus, if r (v) = r (w) for two nodes v and w, then the nodes 
counted in n(v) must be separate and distinct from the 
nodes counted in n(w).  

n  If a node v is of rank s, then n(v) ≥ 2s.  
n  Therefore, since there are at most n nodes total, there can 

be at most n/ 2s that are of rank s. 
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Proof of log* n Amortized Time (3) 

! Definition: Tower of two’s function:  
n  t(i) = 2t(i-1) 

! Nodes v and u are in the same rank 
group g if  
n  g = log*(r(v)) = log*(r(u)): 

! Since the largest rank is log n, the 
largest rank group is  
n  log*(log n) = (log* n) - 1 
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Proof of log* n Amortized Time (4) 

! Charge 1 cyber-dollar per pointer hop during 
a find: 
n  If w is the root or if w is in a different rank group 

than v, then charge the find operation one cyber-
dollar. 

n  Otherwise (w is not a root and v and w are in the 
same rank group), charge the node v one cyber-
dollar. 

! Since there are most (log* n)-1 rank groups, 
this rule guarantees that any find operation is 
charged at most log* n cyber-dollars. 



Union-Find 3/29/14 21:35 

8 

© 2014 Goodrich, Tamassia, Goldwasser Union-Find 15 

Proof of log* n Amortized Time (5) 
! After we charge a node v then v will get a new 

parent, which is a node higher up in v ’s tree.  
! The rank of v ’s new parent will be greater than the 

rank of v ’s old parent w.  
! Thus, any node v can be charged at most the 

number of different ranks that are in v ’s rank group.  
! If v is in rank group g > 0, then v can be charged at 

most t(g)-t(g-1) times before v has a parent in a 
higher rank group (and from that point on, v will 
never be charged again). In other words, the total 
number, C, of cyber-dollars that can ever be charged 
to nodes can be bounded by 
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Proof of log* n Amortized Time (end) 

! Bounding n(g): 

 

! Returning to C:  
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