
Union-Find 3/29/14 21:35

1

© 2014 Goodrich, Tamassia, Goldwasser Union-Find 1

Union-Find Partition Structures

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser Union-Find 2

Partitions with Union-Find
Operations

! makeSet(x): Create a singleton set containing
the element x and return the position storing x
in this set

! union(A,B): Return the set A U B, destroying
the old A and B

! find(p): Return the set containing the element
at position p

Union-Find 3/29/14 21:35

2

© 2014 Goodrich, Tamassia, Goldwasser Union-Find 3

List-based Implementation
! Each set is stored in a sequence represented

with a linked-list
! Each node should store an object containing

the element and a reference to the set name

© 2014 Goodrich, Tamassia, Goldwasser Union-Find 4

Analysis of List-based
Representation

! When doing a union, always move
elements from the smaller set to the
larger set
n  Each time an element is moved it goes to a

set of size at least double its old set
n  Thus, an element can be moved at most

O(log n) times

! Total time needed to do n unions and
finds is O(n log n).

Union-Find 3/29/14 21:35

3

© 2014 Goodrich, Tamassia, Goldwasser Union-Find 5

Tree-based Implementation
! Each element is stored in a node, which contains a

pointer to a set name
! A node v whose set pointer points back to v is also a

set name
! Each set is a tree, rooted at a node with a self-

referencing set pointer
! For example: The sets “1”, “2”, and “5”:

1

7 4

2

6 3

5

10 8

12

11 9

© 2014 Goodrich, Tamassia, Goldwasser Union-Find 6

Union-Find Operations
! To do a union, simply

make the root of one tree
point to the root of the
other

! To do a find, follow set-

name pointers from the
starting node until
reaching a node whose
set-name pointer refers
back to itself

2

6 3

5

10 8

12
11

9

2

6 3

5

10 8

12
11

9

Union-Find 3/29/14 21:35

4

© 2014 Goodrich, Tamassia, Goldwasser Union-Find 7

Union-Find Heuristic 1
! Union by size:

n  When performing a union,
make the root of smaller tree
point to the root of the larger

! Implies O(n log n) time for
performing n union-find
operations:
n  Each time we follow a pointer,

we are going to a subtree of
size at least double the size of
the previous subtree

n  Thus, we will follow at most
O(log n) pointers for any find.

2

6 3

5

10 8

12
11

9

© 2014 Goodrich, Tamassia, Goldwasser Union-Find 8

! Path compression:
n  After performing a find, compress all the pointers on the path

just traversed so that they all point to the root

! Implies O(n log* n) time for performing n union-find
operations:
n  Proof is somewhat involved… (and not in the book)

Union-Find Heuristic 2

2

6 3

5

10 8

12
11

9

2

6 3

5

10 8

12
11

9

Union-Find 3/29/14 21:35

5

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation

Union-Find 9

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation, 2

Union-Find 10

Union-Find 3/29/14 21:35

6

© 2014 Goodrich, Tamassia, Goldwasser Union-Find 11

Proof of log* n Amortized Time
! For each node v that is a root

n  define n(v) to be the size of the subtree rooted at v
(including v)

n  identified a set with the root of its associated tree.
! We update the size field of v each time a set is

unioned into v. Thus, if v is not a root, then n(v) is
the largest the subtree rooted at v can be, which
occurs just before we union v into some other node
whose size is at least as large as v ’s.

! For any node v, then, define the rank of v, which we
denote as r (v), as r (v) = [log n(v)]:

! Thus, n(v) ≥ 2r(v).
! Also, since there are at most n nodes in the tree of v,

r (v) = [log n], for each node v.

© 2014 Goodrich, Tamassia, Goldwasser Union-Find 12

Proof of log* n Amortized Time (2)
! For each node v with parent w:

n  r (v) > r (w)

! Claim: There are at most n/ 2s nodes of rank s.
! Proof:

n  Since r (v) < r (w), for any node v with parent w, ranks are
monotonically increasing as we follow parent pointers up any
tree.

n  Thus, if r (v) = r (w) for two nodes v and w, then the nodes
counted in n(v) must be separate and distinct from the
nodes counted in n(w).

n  If a node v is of rank s, then n(v) ≥ 2s.
n  Therefore, since there are at most n nodes total, there can

be at most n/ 2s that are of rank s.

Union-Find 3/29/14 21:35

7

© 2014 Goodrich, Tamassia, Goldwasser Union-Find 13

Proof of log* n Amortized Time (3)

! Definition: Tower of two’s function:
n  t(i) = 2t(i-1)

! Nodes v and u are in the same rank
group g if
n  g = log*(r(v)) = log*(r(u)):

! Since the largest rank is log n, the
largest rank group is
n  log*(log n) = (log* n) - 1

© 2014 Goodrich, Tamassia, Goldwasser Union-Find 14

Proof of log* n Amortized Time (4)

! Charge 1 cyber-dollar per pointer hop during
a find:
n  If w is the root or if w is in a different rank group

than v, then charge the find operation one cyber-
dollar.

n  Otherwise (w is not a root and v and w are in the
same rank group), charge the node v one cyber-
dollar.

! Since there are most (log* n)-1 rank groups,
this rule guarantees that any find operation is
charged at most log* n cyber-dollars.

Union-Find 3/29/14 21:35

8

© 2014 Goodrich, Tamassia, Goldwasser Union-Find 15

Proof of log* n Amortized Time (5)
! After we charge a node v then v will get a new

parent, which is a node higher up in v ’s tree.
! The rank of v ’s new parent will be greater than the

rank of v ’s old parent w.
! Thus, any node v can be charged at most the

number of different ranks that are in v ’s rank group.
! If v is in rank group g > 0, then v can be charged at

most t(g)-t(g-1) times before v has a parent in a
higher rank group (and from that point on, v will
never be charged again). In other words, the total
number, C, of cyber-dollars that can ever be charged
to nodes can be bounded by

∑
−

=

−−⋅≤
1log*

1
))1()(()(

n

g
gtgtgnC

© 2014 Goodrich, Tamassia, Goldwasser Union-Find 16

Proof of log* n Amortized Time (end)

! Bounding n(g):

! Returning to C:

)(

2

2
2

2
1

2

2
)(

)1(

1)1(

1)1()(

0
1)1(

)(

1)1(

gt
n

n

n

n

ngn

gt

gt

gtgt

s
sgt

gt

gts
s

=

=

⋅<

=

≤

−

+−

−−−

=
+−

+−=

∑

∑

nn

n

gt
gt
n

gtgt
gt
nC

n

g

n

g

n

g

log*

)(
)(

))1()((
)(

1log*

1

1log*

1

1log*

1

≤

=

⋅≤

−−⋅<

∑

∑

∑

−

=

−

=

−

=

