Presentation for use with the textbook Data Structures and Algorithms in Java, $6^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

B-Trees

Computer Memory

- In order to implement any data structure on an actual computer, we need to use computer memory.
- Computer memory is organized into a sequence of words, each of which typically consists of 4,8 , or 16 bytes (depending on the computer).
- These memory words are numbered from 0 to $N-1$, where N is the number of memory words available to the computer.
- The number associated with each memory word is known as its memory address.

Disk Blocks

- Consider the problem of maintaining a large collection of items that does not fit in main memory, such as a typical database.
- In this context, we refer to the external memory is divided into blocks, which we call disk blocks.
- The transfer of a block between external memory and primary memory is a disk transfer or I/O.
- There is a great time difference that exists between main memory accesses and disk accesses
- Thus, we want to minimize the number of disk transfers needed to perform a query or update. We refer to this count as the I/O complexity of the algorithm involved.

(a,b) Trees

- To reduce the number of external-memory accesses when searching, we can represent a map using a multiway search tree.
- This approach gives rise to a generalization of the $(2,4)$ tree data structure known as the (\mathbf{a}, \mathbf{b}) tree.
- An (a, b) tree is a multiway search tree such that each node has between a and b children and stores between $a-1$ and $b-1$ entries.
- By setting the parameters a and b appropriately with respect to the size of disk blocks, we can derive a data structure that achieves good external-memory performance.

Definition

- An (\mathbf{a}, \mathbf{b}) tree, where parameters a and b are integers such that $2 \leq a \leq(b+1) / 2$, is a multiway search tree T with the following additional restrictions:
- Size Property: Each internal node has at least a children, unless it is the root, and has at most b children.
- Depth Property: All the external nodes have the same depth.

Height of an (a,b) Tree

Proposition 15.1: The height of an (a, b) tree storing n entries is $\Omega(\log n / \log b)$ and $O(\log n / \log a)$.

Justification: Let T be an (a, b) tree storing n entries, and let h be the height of T. We justify the proposition by establishing the following bounds on h :

$$
\frac{1}{\log b} \log (n+1) \leq h \leq \frac{1}{\log a} \log \frac{n+1}{2}+1 .
$$

By the size and depth properties, the number $n^{\prime \prime}$ of external nodes of T is at least $2 a^{h-1}$ and at most b^{h}. By Proposition 11.7, $n^{\prime \prime}=n+1$. Thus,

$$
2 a^{h-1} \leq n+1 \leq b^{h}
$$

Taking the logarithm in base 2 of each term, we get

$$
(h-1) \log a+1 \leq \log (n+1) \leq h \log b .
$$

An algebraic manipulation of these inequalities completes the justification.

Searches and Updates

- The search algorithm in an (\mathbf{a}, \mathbf{b}) tree is exactly like the one for multiway search trees.
- The insertion algorithm for an (\mathbf{a}, \mathbf{b}) tree is similar to that for a $(2,4)$ tree.
- An overflow occurs when an entry is inserted into a b-node w, which becomes an illegal (b+1)-node.
- To remedy an overflow, we split node w by moving the median entry of w into the parent of w and replacing w with $a(b+1) / 2$-node w and a (b+1)/2-node w.
- Removing an entry from an (\mathbf{a}, \mathbf{b}) tree is similar to what was done for $(2,4)$ trees.
- An underflow occurs when a key is removed from an a-node w, distinct from the root, which causes w to become an (a-1)-node.
- To remedy an underflow, we perform a transfer with a sibling of w that is not an a-node or we perform a fusion of \mathbf{w} with a sibling that is an a-node.

| (c) 2014 Goodrich, Tamassia, Goldwasser | B-Trees | 7 |
| :---: | :---: | :---: | :---: |

B-Trees

- A version of the (\mathbf{a}, \mathbf{b}) tree data structure, which is the best-known method for maintaining a map in external memory, is a "B-tree."
a A B-tree of order \mathbf{d} is an (\mathbf{a}, \mathbf{b}) tree with $\mathbf{a}=\mathbf{d} / 2$ and $\mathbf{b}=\mathbf{d}$.

I/O Complexity

Proposition 15.2: A B-tree with n entries has I / O complexity $O\left(\log _{B} n\right)$ for search or update operation, and uses $O(n / B)$ blocks, where B is the size of a block.

- Proof:
- Each time we access a node to perform a search or an update operation, we need only perform a single disk transfer.
- Each search or update requires that we examine at most $\mathbf{O}(1)$ nodes for each level of the tree.

