Recursion 3/16/14

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6 edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

Recursion

© 2014 Goodrich, Tamassia, Goldwasser Recursion 1

The Recursion Pattern

o Recursion: when a method calls itself
o Classic example —the factorial function:
nt=12-3 "+ (n-1)n
o Recursive definition: 1 ifn=0
f(n)= {

a As a Java method: n-f(n=1) else

1 public static int factorial(int n) throws lllegalArgumentException {
2 if(n<0)
3 throw new lllegalArgumentException();  // argument must be nonnegative
4 elseif (n ==0)
5 return 1; // base case
6 else
7 return n * factorial(n—1); // recursive case
8 }
© 2014 Goodrich, Tamassia, Goldwasser Recursion 2




Recursion

Content of a Recursive Method

o Base case(s)

= Values of the input variables for which we perform
no recursive calls are called base cases (there
should be at least one base case).

= Every possible chain of recursive calls must
eventually reach a base case.
o Recursive calls
= Calls to the current method.

= Each recursive call should be defined so that it
makes progress towards a base case.

© 2014 Goodrich, Tamassia,
Recursion Goldwasser 3

Visualizing Recursion

o Recursion trace o Example

= A box for each
recursive call
recursiveFactorial (4)

= An arrow from each l return 3°2 = 6

Ca”er tO Ca”ee recursiveFactorial (3) |

= An arrow from each
recursiveFactorial (2)

callee to caller
recursiveFactorial (1) ||

return 4*6 = 24 ——— final answer

return 2*1 =2

showing return value
recursiveFactorial (0)

© 2014 Goodrich, Tamassia,
Recursion Goldwasser 4

3/16/14



Recursion

Example: English Ruler

a Print the ticks and numbers like an English ruler:

-0 === 0 --=0
- 1
1 - 2
- 3

-2 @ - 1

© 2014 Goodrich, Tamassia,
Recursion Goldwasser 5

Slide by Matt Stallmann
included with permission.

Using Recursion

drawInterval(length)
Input: length of a ‘tick’
Output: ruler with tick of the given length in
the middle and smaller rulers on either side

----- 0 -0

drawlnterval(length)

if( length > 0 ) then

' '\drawInterval (length - 1)
. -3 draw line of the given length
A e \drawInterval (length - 1)

© 2014 Goodrich, Tamassia, Goldwasser Recursion 6

3/16/14



Recursion

‘Recursive Drawing Method

o The drawing method Trawinternal(2)

Output

drawlInterval(3)

is based on the drawinterval(1)
following recursive
definition | —
a Aninterval with a
central tick length P PG S —
L >1 consists of: drawinterval(1)
= An interval with a
central tick length L-1 | -
= An single tick of

length L |
= An interval with a

central tick length L-1

(previous pattern repeats)

Recursion © 2014 Goodrich, Tamassia, Goldwasser 7

|
!

A Recursive Method for Drawing

‘Ticks on an English Ruler

1 /x* Draws an English ruler for the given number of inches and major tick length. x/
2 public static void drawRuler(int ninches, int majorLength)

-~

3 drawLine(majorLength, 0); // draw inch 0 line and label
4 for (int j = 1; ] <= ninches; j++) {

5 drawlnterval(majorLength — 1); // draw interior ticks for inch

6 drawLine(majorLength, j); // draw inch j line and label

7 )

8 )

9 private static void drawinterval(int centralLength) { No'te The two
10 if (centralLength >=1) { W recursive Ca”S
11 drawlinterval(centralLength — 1); recursivel interval
12 drawLine(centralLength); Center tick line (without label)

13 drawlnterval(centralLength — 1); // recursively draw bottom interval
14
15

16 private static void drawLine(int tickLength, int tickLabel) {
17 for (int j = 0; j < tickLength; j++)

18 System.out.print("-");

19 if (tickLabel >= 0)

20 System.out.print(" " + tickLabel);

21 System.out.print("\n");

23 /%% Draws a line with the given tick length (but no label). %/
24 private static void drawLine(int tickLength) {
25 drawLine(tickLength, —1);

© 2014 Goodrich, Tamassia, Goldwasser Recursion 8

3/16/14



Recursion

Binary Search

Search for an integer in an ordered list
1 /%%
2 % Returns true if the target value is found in the indicated portion of the data array.
3 x This search only considers the array portion from data[low] to data[high] inclusive.
4 %/
5 public static boolean binarySearch(int[ ] data, int target, int low, int high) {
6 if (low > high)
7 return false; // interval empty; no match
8 else {
9 int mid = (low + high) / 2;
10 if (target == data[mid])
11 return true; // found a match
12 else if (target < data[mid])
13 return binarySearch(data, target, low, mid — 1); // recur left of the middle
14 else
15 return binarySearch(data, target, mid + 1, high); // recur right of the middle
16 }
17 }
© 2014 Goodrich, Tamassia, Goldwasser Recursion 9

Visualizing Binary Search

‘o We consider three cases:
If the target equals data[mid], then we have found the target.

n
» If target < data[mid], then we recur on the first half of the
sequence.
= If target > data[mid], then we recur on the second half of the
sequence.
001 23 456 7 8 910111213 1415
[2]a]s]7]8]9r2]14]17]19]22]25]27]28]33]37]
JN mid high
[2]4]s[7]8]9i2]1a]az]19]22]25]27]28]33]57]
low mid high
[2]4]s[7]8]o[r2]1a]az]1o]22]25]27]28]33]57]
niu mfidhi?;h
[2]4]s]7]s]o]r2]ua]17]10]22]25]27]28]33]37]
low=mid=high
© 2014 Goodrich, Tamassia, Goldwasser Recursion

10

3/16/14



Recursion

Analyzing Binary Search

o Runs in O(log n) time.
= The remaining portion of the list is of size
high — low + 1
= After one comparison, this becomes one of
the following:

I high high —1 1
(mid—1)—low+1= {ow+ € J—Iowgw

2 2

high — (mid+ 1)+ 1 = high — {Iow—;hlth - hlgh—low—%—l.

= 2
= Thus, each recursive call divides the search

region in half; hence, there can be at most
log n levels

© 2014 Goodrich, Tamassia, Goldwasser Recursion 11

Linear Recursion

o Test for base cases

= Begin by testing for a set of base cases (there should be
at least one).

= Every possible chain of recursive calls must eventually
reach a base case, and the handling of each base case
should not use recursion.

o Recur once
= Perform a single recursive call

= This step may have a test that decides which of several
possible recursive calls to make, but it should ultimately
make just one of these calls

= Define each possible recursive call so that it makes
progress towards a base case.

© 2014 Goodrich, Tamassia, Goldwasser Recursion 12

3/16/14



Recursion

Example of Linear Recursion

: Recursion trace of linearSum(data, 5)
Algorithm linearSum(A, n): called on array data = [4, 3, 6, 2, 8]
Input:
Array, A, of integers
Integer n such that

return 15 + data[4] = 15 + 8 =23

linearSum(data, 5)

0=ns]Al return 13 + data3] =13 +2 =15
Output: . linearSum(data, 4)
g e ATt w7 e 7o
linearSum(data, 3)
if n = 0 then return 4 + data[l] =4 +3=7
return 0 linearSum(data, 2)
else return 0 + data[0] =0 + 4 = 4
return ( linearSum(data, 1) \

return 0

linearSum(A, n - 1) + A[n - 1]

linearSum(data, 0)

© 2014 Goodrich, Tamassia, Goldwasser Recursion 13

Reversing an Array

Algorithm reverseArray(A, i, j):
Input: An array A and nonnegative integer
indices i and j

Output: The reversal of the elements in A
starting at index i and ending at

ifi < jthen
Swap A[i] and A[ j]
reverseArray(A, i+ 1, j— 1)
return

© 2014 Goodrich, Tamassia, Goldwasser Recursion 14

3/16/14



Recursion 3/16/14

Defining Arguments for Recursion

o In creating recursive methods, it is important to define the
methods in ways that facilitate recursion.

o This sometimes requires we define additional parameters
that are passed to the method.

o For example, we defined the array reversal method as
reverseArray(A, i, j), not reverseArray(A)

1 /%% Reverses the contents of subarray data[low] through datalhigh] inclusive. /

2 public static void reverseArray(int[ ] data, int low, int high) {

3 if (low < high) { // if at least two elements in subarray
4 int temp = data[low]; // swap data[low] and datalhigh]

5 data[low] = data[high];

6 datalhigh] = temp;

7 reverseArray(data, low + 1, high — 1); // recur on the rest

8 '}

9 }

©

2014 Goodrich, Tamassia, Goldwasser Recursion 15

Computing Powers

a The power function, p(x,n)=x", can be
defined recursively:

p(x,n) = {

o This leads to an power function that runs in
O(n) time (for we make n recursive calls)

o We can do better than this, however

1 ifn=0

x-p(x,n-1) else

© 2014 Goodrich, Tamassia, Goldwasser Recursion 16




Recursion

Recursive Squaring

o We can derive a more efficient linearly

recursive algorithm by using repeated squaring:

1 ifx=0
p(x,n)=1x-p(x,(n-1)/2)> if x>0isodd
p(x,n/2)’ if x> 0iseven

o For example,
24= 2(42)2 = (24/2)2 = (22)2 =42=16
25= 21+(4/2)2 = 2(24/2)2 = 2(22)2 = 2(42) =132
26= 2(6/2)2 - (26/2)2 = (23)2 = 82 = 64
27= 2146212 = 2(262)2 = 2(23)2 = 2(82) = 128

© 2014 Goodrich, Tamassia, Goldwasser Recursion 17

‘Recursive Squaring Method

Algorithm Power(x, n):
Input: A number x and integern = 0
Output: The value x"
ifn=0 then
return 1
if n is odd then
y = Power(x, (n-1)/2)
returnx " y'y

else
y = Power(x, n/ 2)
returny 'y
© 2014 Goodrich, Tamassia, Goldwasser Recursion 18

3/16/14



Recursion

Analysis

Algorithm Power(x, n):
Input: A number x and

integern =0 Each time we make a
Output: The value x recursive call we halve
ifn=0 then the value of n; hence,

we make log n recursive

return 1 calls. That is, this

if n is odd the method runs in O(log n)
y = Power(x -1)/ 2) time.
return x_4 -

else It is important that we
= Power(x. n/ 2 use a variable twice .
y t 0 e_( 0/ 2) here rather than calling
rewurny °y the method twice.
© 2014 Goodrich, Tamassia, Goldwasser Recursion 19

Tail Recursion

o Tail recursion occurs when a linearly recursive
method makes its recursive call as its last step.

a The array reversal method is an example.

o Such methods can be easily converted to non-
recursive methods (which saves on some resources).

o Example:
Algorithm IterativeReverseArray(A, i, j ):
Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at index
i and ending at j
whilei < jdo
Swap Ali Jand A[j ]
i=i+1
j=j-1
return

© 2014 Goodrich, Tamassia, Goldwasser Recursion 20

3/16/14

10



Recursion

Binary Recursion

recursive calls for each non-base case.

o Example from before: the drawInterval method
for drawing ticks on an English ruler.

. 1 0 -—0

© 2014 Goodrich, Tamassia, Goldwasser Recursion

a Binary recursion occurs whenever there are two

21

Another Binary Recusive Method

Algorithm BinarySum(A, i, n):
Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i
if n = 1 then
return A[i]
return BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2)

o Example trace:

o Problem: add all the numbers in an integer array A:

© 2014 Goodrich, Tamassia, Goldwasser Recursion

22

3/16/14

11



Recursion

'Computing Fibonacci Numbers

o Fibonacci numbers are defined recursively:
Fy=0
F, =1
F,=F_,"F, fori>].
o Recursive algorithm (first attempt):
Algorithm BinaryFib(k):
Input: Nonnegative integer k
Output: The kth Fibonacci number F,
if £ =1 then
return k
else
return BinaryFib(k — 1) + BinaryFib(k — 2)

© 2014 Goodrich, Tamassia, Goldwasser Recursion 23

“Analysis

o Let n, be the number of recursive calls by BinaryFib(k)

m =1

m =1

s L=m+n+l=1+1+1=3

s = +mn+1=3+1+1=5

s y=m+n+1=5+3+1=9

m =M+ +1=9+5+1=15

m Ng=ns+n+1=15+9+1=25

m ,=n+n+1=25+15+1=41

m Ng=n,+n+1=41+25+1=67.
o Note that n, at least doubles every other time
o Thatis, n, > 22, It is exponential

© 2014 Goodrich, Tamassia, Goldwasser Recursion 24

3/16/14

12



Recursion

A Better Fibonacci Algorithm

o Use linear recursion instead

Algorithm LinearFibonacci(k):
Input: A nonnegative integer k
Output: Pair of Fibonacci numbers (F,, F;)
if k = 1 then
return (k, 0)
else
(i, j) = LinearFibonacci(k — 1)
return (i +j, i)

o LinearFibonacci makes k-1 recursive calls

© 2014 Goodrich, Tamassia, Goldwasser Recursion 25

Multiple Recursion

o Motivating example:
= summation puzzles
* pot + pan = bib
* dog + cat = pig
* boy + girl = baby
o Multiple recursion:
= makes potentially many recursive calls
= not just one or two

© 2014 Goodrich, Tamassia, Goldwasser Recursion 26

3/16/14

13



Recursion

Algorithm for Multiple Recursion

Algorithm PuzzleSolve(k,S,U):

Input:)lnteger k, sequence S, and set U (universe of elements to
test

Output: Enumeration of all k-length extensions to S using elements
in U without repetitions

foralle inUdo

Remove e from U  {e is now being used}
Add e to the end of S
if Kk =1 then

Test whether S is a configuration that solves the puzzle

if S solves the puzzle then

return “Solution found: 7 S

else

PuzzleSolve(k - 1, S,U)
Add e back to U {e is now unused}
Remove e from the end of S

© 2014 Goodrich, Tamassia, Goldwasser Recursion 27

Slide by Matt Stallmann
included with permission.

Example

cbb + ba = abc a,b,c stand for 7,8,9; not
799 + 98 = 997 necessarily in that order
[1{ab,c}

[a] {b,c} [b] {a,c} [c] {a,b}
a=7 b=7 c=7

[ab] {c} [ac] {b} [ca] {b} [cb] {a}
a=7,b=8 a=7,c=8 c=7,a=8 c=7,b=8
c=9 b=9 b=9 a=9
[ba] {c} [bc] {a} _
b=7,a=8 b=7,c=8 might be able to
c=9 a=9 stop sooner
© 2014 Goodrich, Tamassia, Goldwasser Recursion 28

3/16/14

14



Recursion

Visualizing PuzzleSolve

Initial call\

[ PuzzleSolve (3,().{a,b,c}) )

e g R A A g = =<

[ PuzzleSolve (2,a,{b.c}) ] ( PuzzleSolve (2,b{a,c}) ) ( PuzzleSolve (2,.{a,b}) )

PuzzleSolve (1,ab {c}) PuzzleSolve (1,ba,{c}) PuzzleSolve (1,ca,{b})
bac cab

abc
PuzzleSolve (1,ac,{b}) PuzzleSolve (1,bc {a}) PuzzleSolve (1,cb,{a})
acb bca cba
© 2014 Goodrich, Tamassia, Goldwasser Recursion 29

3/16/14

15



