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Recursion 

© 2014 Goodrich, Tamassia, Goldwasser 

Presentation for use with the textbook Data Structures and 
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, 
and M. H. Goldwasser, Wiley, 2014 

Recursion 2 

The Recursion Pattern 
q  Recursion: when a method calls itself 
q  Classic example – the factorial function:  

  n! = 1· 2· 3· ··· · (n-1)· n 
q  Recursive definition: 
 
q  As a Java method: ⎩
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Recursion 3 

Content of a Recursive Method 
q  Base case(s) 

n  Values of the input variables for which we perform 
no recursive calls are called base cases (there 
should be at least one base case).  

n  Every possible chain of recursive calls must 
eventually reach a base case. 

q  Recursive calls 
n  Calls to the current method.  
n  Each recursive call should be defined so that it 

makes progress towards a base case. 

© 2014 Goodrich, Tamassia, 
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Visualizing Recursion 
q  Recursion trace 

n  A box for each 
recursive call 

n  An arrow from each 
caller to callee 

n  An arrow from each 
callee to caller 
showing return value 

q  Example 

Recursion 4 

recursiveFactorial ( 4 ) 

recursiveFactorial ( 3 ) 

recursiveFactorial ( 2 ) 

recursiveFactorial ( 1 ) 

recursiveFactorial ( 0 ) 
return  1 

call 

call 

call 

call 

return  1 * 1  =  1 

return  2 * 1  =  2 

return  3 * 2  =  6 

return  4 * 6  =  24 final answer call 

© 2014 Goodrich, Tamassia, 
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Recursion 5 

Example: English Ruler 
q  Print the ticks and numbers like an English ruler: 

© 2014 Goodrich, Tamassia, 
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Using Recursion 
drawInterval(length) 

Input: length of a ‘tick’ 
Output: ruler with tick of the given length in 
the middle and smaller rulers on either side 

Recursion © 2014 Goodrich, Tamassia, Goldwasser 

drawInterval(length)  
 
  if( length > 0 ) then 
 
     drawInterval ( length - 1 ) 
 
     draw line of the given length 
 
     drawInterval ( length - 1 ) 
 

Slide by Matt Stallmann 
included with permission. 
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Recursion 7 

q  The drawing method 
is based on the 
following recursive 
definition 

q  An interval with a 
central tick length  
L >1 consists of: 
n  An interval with a 

central tick length L-1 
n  An single tick of 

length L 
n  An interval with a 

central tick length L-1 

© 2014 Goodrich, Tamassia, Goldwasser 

Recursive Drawing Method  

Recursion 8 

A Recursive Method for Drawing 
Ticks on an English Ruler 

Note the two 
recursive calls 
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Binary Search 
Search for an integer in an ordered list 
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Visualizing Binary Search 
q  We consider three cases: 

n  If the target equals data[mid], then we have found the target. 
n  If target < data[mid], then we recur on the first half of the 

sequence. 
n  If target > data[mid], then we recur on the second half of the 

sequence. 
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Analyzing Binary Search 
q  Runs in O(log n) time. 

n  The remaining portion of the list is of size 
high – low + 1 

n  After one comparison, this becomes one of 
the following: 

n  Thus, each recursive call divides the search 
region in half; hence, there can be at most 
log n levels 
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Recursion 12 

Linear Recursion 
q  Test for base cases 

n  Begin by testing for a set of base cases (there should be 
at least one).  

n  Every possible chain of recursive calls must eventually 
reach a base case, and the handling of each base case 
should not use recursion. 

q  Recur once 
n  Perform a single recursive call 
n  This step may have a test that decides which of several 

possible recursive calls to make, but it should ultimately 
make just one of these calls 

n  Define each possible recursive call so that it makes 
progress towards a base case. 

© 2014 Goodrich, Tamassia, Goldwasser 
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Recursion 13 

Example of Linear Recursion 

© 2014 Goodrich, Tamassia, Goldwasser 

Algorithm linearSum(A, n): 
Input:  
  Array, A, of integers 
  Integer n such that 

 0 ≤ n ≤ |A| 
Output:  

 Sum of the first n  
integers in A 

 
if n = 0 then 
  return 0 
else 
  return  
linearSum(A, n - 1) + A[n - 1] 
 
 

Recursion trace of linearSum(data, 5) 
called on array data = [4, 3, 6, 2, 8] 

Recursion 14 

Reversing an Array 
Algorithm reverseArray(A, i,  j): 
Input: An array A and nonnegative integer 

indices i and  j 
Output: The reversal of the elements in A 

starting at index i and ending at   
 
if i <  j then 

  Swap A[i] and A[ j] 
  reverseArray(A, i + 1,  j - 1) 

return 
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Recursion 15 

Defining Arguments for Recursion 
q  In creating recursive methods, it is important to define the 

methods in ways that facilitate recursion. 
q  This sometimes requires we define additional parameters 

that are passed to the method. 
q  For example, we defined the array reversal method as 

reverseArray(A, i,  j), not reverseArray(A) 

© 2014 Goodrich, Tamassia, Goldwasser 

Recursion 16 

Computing Powers 

q  The power function, p(x,n)=xn, can be 
defined recursively: 

q  This leads to an power function that runs in 
O(n) time (for we make n recursive calls) 

q  We can do better than this, however 
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Recursion 17 

Recursive Squaring 
q  We can derive a more efficient linearly 

recursive algorithm by using repeated squaring: 

 

q  For example, 
24	

=  2(4/2)2 = (24/2)2 = (22)2 = 42 = 16	


25	

=  21+(4/2)2 = 2(24/2)2 = 2(22)2 = 2(42) = 32 
26	

= 2(6/ 2)2 = (26/2)2 = (23)2 = 82 = 64	


27	

= 21+(6/2)2 = 2(26/2)2 = 2(23)2 = 2(82) = 128 
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Recursive Squaring Method 

Algorithm Power(x, n): 
      Input: A number x and integer n = 0 
      Output: The value xn 

     if n = 0  then 
  return 1 

     if n is odd then 
  y  = Power(x, (n - 1)/ 2) 
  return x · y ·y 

     else 
  y = Power(x, n/ 2) 
  return y · y 

© 2014 Goodrich, Tamassia, Goldwasser 
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Recursion 19 

Analysis 

Algorithm Power(x, n): 
      Input: A number x and 

integer n = 0 
      Output: The value xn 

     if n = 0  then 
  return 1 

     if n is odd then 
  y  = Power(x, (n - 1)/ 2) 
  return x · y · y 

     else 
  y = Power(x, n/ 2) 
  return y · y 

It is important that we 
use a variable twice 
here rather than calling 
the method twice. 

Each time we make a 
recursive call we halve 
the value of n; hence, 
we make log n recursive 
calls. That is, this 
method runs in O(log n) 
time. 

© 2014 Goodrich, Tamassia, Goldwasser 

Recursion 20 

Tail Recursion 
q  Tail recursion occurs when a linearly recursive 

method makes its recursive call as its last step. 
q  The array reversal method is an example. 
q  Such methods can be easily converted to non-

recursive methods (which saves on some resources). 
q  Example: 

Algorithm IterativeReverseArray(A, i, j ): 
      Input: An array A and nonnegative integer indices i and j 
      Output: The reversal of the elements in A starting at index 

i and ending at j 
     while i <  j do 

 Swap A[i ] and A[ j ] 
 i  = i + 1 
 j  = j - 1 

     return 

© 2014 Goodrich, Tamassia, Goldwasser 
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Recursion 21 

Binary Recursion 
q  Binary recursion occurs whenever there are two 

recursive calls for each non-base case. 
q  Example from before: the drawInterval method 

for drawing ticks on an English ruler. 

© 2014 Goodrich, Tamassia, Goldwasser 

Recursion 22 

Another Binary Recusive Method 
q  Problem: add all the numbers in an integer array A: 

Algorithm BinarySum(A, i, n): 
      Input: An array A and integers i and n 
      Output: The sum of the n integers in A starting at index i 
     if n = 1 then 

 return A[i] 
     return BinarySum(A, i, n/ 2) + BinarySum(A, i + n/ 2, n/ 2) 

q  Example trace: 

3 ,  1 

2 ,  2 
0 ,  4 

2 ,  1 1 ,  1 0 ,  1 

0 ,  8 

0 ,  2 

7 ,  1 

6 ,  2 
4 ,  4 

6 ,  1 5 ,  1 

4 ,  2 

4 ,  1 

© 2014 Goodrich, Tamassia, Goldwasser 
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Recursion 23 

Computing Fibonacci Numbers 
q  Fibonacci numbers are defined recursively: 

F0 =  0	


F1 =  1	


Fi =  Fi-1 + Fi-2     for i > 1.	



q  Recursive algorithm (first attempt): 
Algorithm BinaryFib(k):	


      Input: Nonnegative integer k	


      Output: The kth Fibonacci number Fk	


     if k = 1 then	


	

 	

return k	



     else	


	

 	

return BinaryFib(k - 1) + BinaryFib(k - 2) 

© 2014 Goodrich, Tamassia, Goldwasser 
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Analysis 
q  Let nk be the number of recursive calls by BinaryFib(k) 

n  n0 = 1   
n  n1 = 1   
n  n2 = n1 + n0 + 1 = 1 + 1 + 1 = 3  
n  n3 = n2 + n1 + 1 = 3 + 1 + 1 = 5  
n  n4 = n3 + n2 + 1 = 5 + 3 + 1 = 9  
n  n5 = n4 + n3 + 1 = 9 + 5 + 1 = 15   
n  n6 = n5 + n4 + 1 = 15 + 9 + 1 = 25   
n  n7 = n6 + n5 + 1 = 25 + 15 + 1 = 41   
n  n8 = n7 + n6 + 1 = 41 + 25 + 1 = 67. 

q  Note that nk at least doubles every other time 
q  That is, nk > 2k/2. It is exponential! 

© 2014 Goodrich, Tamassia, Goldwasser 
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Recursion 25 

A Better Fibonacci Algorithm  
q  Use linear recursion instead 

 
Algorithm LinearFibonacci(k): 

      Input: A nonnegative integer k 
      Output: Pair of Fibonacci numbers (Fk , Fk-1) 
     if k = 1 then 
  return (k, 0) 

     else 
  (i,  j)  =  LinearFibonacci(k - 1) 
  return (i +j, i) 
 

q   LinearFibonacci makes k-1 recursive calls 

© 2014 Goodrich, Tamassia, Goldwasser 
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Multiple Recursion 

q  Motivating example:  
n  summation puzzles 

w pot + pan = bib   
w dog + cat = pig   
w boy + girl = baby   

q  Multiple recursion:  
n  makes potentially many recursive calls 
n  not just one or two 

 © 2014 Goodrich, Tamassia, Goldwasser 
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Recursion 27 

Algorithm for Multiple Recursion 
Algorithm PuzzleSolve(k,S,U): 
 Input: Integer k, sequence S, and set U (universe of elements to 

test) 
 Output:  Enumeration of all k-length extensions to S using elements 

in U without repetitions 
 for all e  in U do 

 Remove e from U  {e is now being used} 
 Add e to the end of S 
 if k = 1 then 
  Test whether S is a configuration that solves the puzzle 
  if S solves the puzzle then 
   return “Solution found: ” S 
 else 
  PuzzleSolve(k - 1, S,U) 
 Add e back to U  {e is now unused} 
 Remove e from the end of S 

 © 2014 Goodrich, Tamassia, Goldwasser 

Example 
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cbb + ba = abc a,b,c stand for 7,8,9; not 
necessarily in that order 

[] {a,b,c} 

[a] {b,c} 
a=7 

[b] {a,c} 
b=7 

[c] {a,b} 
c=7 

[ab] {c} 
a=7,b=8 
c=9 

[ac] {b} 
a=7,c=8 
b=9 

[ba] {c} 
b=7,a=8 
c=9 

[bc] {a} 
b=7,c=8 
a=9 

[ca] {b} 
c=7,a=8 
b=9 

[cb] {a} 
c=7,b=8 
a=9 

might be able to 
stop sooner 

Slide by Matt Stallmann 
included with permission. 
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Recursion 29 

Visualizing PuzzleSolve 

PuzzleSolve ( 3 , () ,{ a , b , c } ) 
Initial call 

PuzzleSolve ( 2 , c ,{ a , b } ) PuzzleSolve ( 2 , b ,{ a , c } ) PuzzleSolve ( 2 , a ,{ b , c } ) 

PuzzleSolve ( 1 , ab ,{ c } ) 

PuzzleSolve ( 1 , ac ,{ b } ) PuzzleSolve ( 1 , cb ,{ a } ) 

PuzzleSolve ( 1 , ca ,{ b } ) 

PuzzleSolve ( 1 , bc ,{ a } ) 

PuzzleSolve ( 1 , ba ,{ c } ) 
abc 

acb 

bac 

bca 

cab 

cba 

© 2014 Goodrich, Tamassia, Goldwasser 


