
Depth-First Search 1© 2004 Goodrich, Tamassia

Depth-First Search

DB

A

C

E

Depth-First Search 2© 2004 Goodrich, Tamassia

Subgraphs
A subgraph S of a graph 
G is a graph such that 

The vertices of S are a 
subset of the vertices of G
The edges of S are a 
subset of the edges of G

A spanning subgraph of G 
is a subgraph that 
contains all the vertices 
of G

Subgraph

Spanning subgraph
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Connectivity

A graph is 
connected if there is 
a path between 
every pair of 
vertices
A connected 
component of a 
graph G is a 
maximal connected 
subgraph of G

Connected graph

Non connected graph with two 
connected components
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Trees and Forests
A (free) tree is an 
undirected graph T such 
that

T is connected
T has no cycles

This definition of tree is 
different from the one of 
a rooted tree

A forest is an undirected 
graph without cycles
The connected 
components of a forest 
are trees

Tree

Forest
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Spanning Trees and Forests
A spanning tree of a 
connected graph is a 
spanning subgraph that is 
a tree
A spanning tree is not 
unique unless the graph is 
a tree
Spanning trees have 
applications to the design 
of communication 
networks
A spanning forest of a 
graph is a spanning 
subgraph that is a forest

Graph

Spanning tree
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Depth-First Search (§ 12.3.1)
Depth- first search (DFS) 
is a general technique 
for traversing a graph
A DFS traversal of a 
graph G 

Visits all the vertices and 
edges of G
Determines whether G is 
connected
Computes the connected 
components of G
Computes a spanning 
forest of G

DFS on a graph with n
vertices and m edges 
takes O(n + m ) time
DFS can be further 
extended to solve other 
graph problems

Find and report a path 
between two given 
vertices
Find a cycle in the graph

Depth- first search is to 
graphs what Euler tour 
is to binary trees
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DFS Algorithm
The algorithm uses a mechanism 
for setting and getting “labels” of 
vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
DFS(G, w)

else
setLabel(e, BACK)

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

DFS(G, v)
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Example (cont.)
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DFS and Maze Traversal 
The DFS algorithm is 
similar to a classic 
strategy for exploring 
a maze

We mark each 
intersection, corner 
and dead end (vertex) 
visited
We mark each corridor 
(edge ) traversed
We keep track of the 
path back to the 
entrance (start vertex) 
by means of a rope 
(recursion stack)
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Properties of DFS
Property 1

DFS(G, v) visits all the 
vertices and edges in 
the connected 
component of v

Property 2
The discovery edges 
labeled by DFS(G, v) 
form a spanning tree of 
the connected 
component of v
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Analysis of DFS
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice 

once as UNEXPLORED
once as VISITED

Each edge is labeled twice
once as UNEXPLORED
once as DISCOVERY or BACK

Method incidentEdges is called once for each vertex
DFS runs in O(n + m) time provided the graph is 
represented by the adjacency list structure

Recall that Σv deg(v) = 2m
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Path Finding
We can specialize the DFS 
algorithm to find a path 
between two given 
vertices u and z using the 
template method pattern
We call DFS(G, u) with u
as the start vertex
We use a stack S to keep 
track of the path between 
the start vertex and the 
current vertex
As soon as destination 
vertex z is encountered, 
we return the path as the 
contents of the stack 

Algorithm pathDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
if  v = z

return S.elements()
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop(e)

else
setLabel(e, BACK)

S.pop(v)
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Cycle Finding
We can specialize the 
DFS algorithm to find a 
simple cycle using the 
template method pattern
We use a stack S to 
keep track of the path 
between the start vertex 
and the current vertex
As soon as a back edge 
(v, w) is encountered, 
we return the cycle as 
the portion of the stack 
from the top to vertex w

Algorithm cycleDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
S.push(e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
pathDFS(G, w, z)
S.pop(e)

else
T ← new empty stack
repeat

o ← S.pop()
T.push(o)

until o = w
return T.elements()

S.pop(v)


