
Depth-First Search 1© 2004 Goodrich, Tamassia

Depth-First Search

DB

A

C

E

Depth-First Search 2© 2004 Goodrich, Tamassia

Subgraphs
A subgraph S of a graph
G is a graph such that

The vertices of S are a
subset of the vertices of G
The edges of S are a
subset of the edges of G

A spanning subgraph of G
is a subgraph that
contains all the vertices
of G

Subgraph

Spanning subgraph

Depth-First Search 3© 2004 Goodrich, Tamassia

Connectivity

A graph is
connected if there is
a path between
every pair of
vertices
A connected
component of a
graph G is a
maximal connected
subgraph of G

Connected graph

Non connected graph with two
connected components

Depth-First Search 4© 2004 Goodrich, Tamassia

Trees and Forests
A (free) tree is an
undirected graph T such
that

T is connected
T has no cycles

This definition of tree is
different from the one of
a rooted tree

A forest is an undirected
graph without cycles
The connected
components of a forest
are trees

Tree

Forest

Depth-First Search 5© 2004 Goodrich, Tamassia

Spanning Trees and Forests
A spanning tree of a
connected graph is a
spanning subgraph that is
a tree
A spanning tree is not
unique unless the graph is
a tree
Spanning trees have
applications to the design
of communication
networks
A spanning forest of a
graph is a spanning
subgraph that is a forest

Graph

Spanning tree
Depth-First Search 6© 2004 Goodrich, Tamassia

Depth-First Search (§ 12.3.1)
Depth- first search (DFS)
is a general technique
for traversing a graph
A DFS traversal of a
graph G

Visits all the vertices and
edges of G
Determines whether G is
connected
Computes the connected
components of G
Computes a spanning
forest of G

DFS on a graph with n
vertices and m edges
takes O(n + m) time
DFS can be further
extended to solve other
graph problems

Find and report a path
between two given
vertices
Find a cycle in the graph

Depth- first search is to
graphs what Euler tour
is to binary trees

Depth-First Search 7© 2004 Goodrich, Tamassia

DFS Algorithm
The algorithm uses a mechanism
for setting and getting “labels” of
vertices and edges

Algorithm DFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the edges of G

in the connected component of v
as discovery edges and back edges

setLabel(v, VISITED)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
DFS(G, w)

else
setLabel(e, BACK)

Algorithm DFS(G)
Input graph G
Output labeling of the edges of G

as discovery edges and
back edges

for all u ∈ G.vertices()
setLabel(u, UNEXPLORED)

for all e ∈ G.edges()
setLabel(e, UNEXPLORED)

for all v ∈ G.vertices()
if getLabel(v) = UNEXPLORED

DFS(G, v)

Depth-First Search 8© 2004 Goodrich, Tamassia

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge

Depth-First Search 9© 2004 Goodrich, Tamassia

Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

Depth-First Search 10© 2004 Goodrich, Tamassia

DFS and Maze Traversal
The DFS algorithm is
similar to a classic
strategy for exploring
a maze

We mark each
intersection, corner
and dead end (vertex)
visited
We mark each corridor
(edge) traversed
We keep track of the
path back to the
entrance (start vertex)
by means of a rope
(recursion stack)

Depth-First Search 11© 2004 Goodrich, Tamassia

Properties of DFS
Property 1

DFS(G, v) visits all the
vertices and edges in
the connected
component of v

Property 2
The discovery edges
labeled by DFS(G, v)
form a spanning tree of
the connected
component of v

DB

A

C

E

Depth-First Search 12© 2004 Goodrich, Tamassia

Analysis of DFS
Setting/getting a vertex/edge label takes O(1) time
Each vertex is labeled twice

once as UNEXPLORED
once as VISITED

Each edge is labeled twice
once as UNEXPLORED
once as DISCOVERY or BACK

Method incidentEdges is called once for each vertex
DFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

Recall that Σv deg(v) = 2m

Depth-First Search 13© 2004 Goodrich, Tamassia

Path Finding
We can specialize the DFS
algorithm to find a path
between two given
vertices u and z using the
template method pattern
We call DFS(G, u) with u
as the start vertex
We use a stack S to keep
track of the path between
the start vertex and the
current vertex
As soon as destination
vertex z is encountered,
we return the path as the
contents of the stack

Algorithm pathDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
if v = z

return S.elements()
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
S.push(e)
pathDFS(G, w, z)
S.pop(e)

else
setLabel(e, BACK)

S.pop(v)
Depth-First Search 14© 2004 Goodrich, Tamassia

Cycle Finding
We can specialize the
DFS algorithm to find a
simple cycle using the
template method pattern
We use a stack S to
keep track of the path
between the start vertex
and the current vertex
As soon as a back edge
(v, w) is encountered,
we return the cycle as
the portion of the stack
from the top to vertex w

Algorithm cycleDFS(G, v, z)
setLabel(v, VISITED)
S.push(v)
for all e ∈ G.incidentEdges(v)

if getLabel(e) = UNEXPLORED
w ← opposite(v,e)
S.push(e)
if getLabel(w) = UNEXPLORED

setLabel(e, DISCOVERY)
pathDFS(G, w, z)
S.pop(e)

else
T ← new empty stack
repeat

o ← S.pop()
T.push(o)

until o = w
return T.elements()

S.pop(v)

