Directed Graphs

Digraphs (§ 12.4)

- A digraph is a graph whose edges are all directed
- Short for "directed graph"
- Applications
- one bay streets
- flights
- task scheduling

Digraph Properties

- A graph $G=(V, E)$ such that
- Each edge goes in one direction:

- Edge (a,b) goes from a to b, but not b to a.
- If G is simple, $m \leq n *(n-1)$.

If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of inedges and out-edges in time proportional to their size.

Digraph Application

- Scheduling: edge (a, b) means task a must be completed before b can be started

Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction
- In the directed DFS algorithm, we have four types of edges
- discovery edges
- back edges
- forward edges
- cross edges
- A directed DFS starting a a
 vertices reachable from s

Reachability

- DFS tree rooted at v: vertices reachable from v via directed paths

Strong Connectivity

*Each vertex can reach all other vertices

Strong Connectivity Algorithm

- Pick a vertex vin G .
- Perform a DFS from v in G.
- If there's a w not visited, print "no".
- Let G^{\prime} be G with edges reversed.
- Perform a DFS from vin G^{\prime}.
- If there's a w not visited, print "no".
- Else, print "yes".
- Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$.

Strongly Connected Components

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- Can also be done in $O(n+m)$ time using DFS, but is more complicated (similar to biconnectivity).

Transitive Closure

- Given a digraph G, the transitive closure of G is the digraph G^{*} such that
- \boldsymbol{G}^{*} has the same vertices as G
- if \boldsymbol{G} has a directed path from u to $v(u \neq v), G^{*}$ has a directed edge from u to v
- The transitive closure provides reachability information about a digraph

Floyd-Warshall

 Transitive Closure- Idea \#1: Number the vertices 1, 2, ..., n.
- Idea \#2: Consider paths that use only
 vertices numbered $1,2, \ldots, k$, as intermediate vertices:

Uses only vertices numbered $1, \ldots, k$

Floyd-Warshall's Algorithm

Floyd-Warshall Example

- Floyd-Warshall's algorithm numbers the vertices of \boldsymbol{G} as v_{1}, \ldots, v_{n} and computes a
series of digraphs $\boldsymbol{G}_{0}, \ldots, \boldsymbol{G}_{\boldsymbol{n}}$
- $G_{0}=\boldsymbol{G}$
- \boldsymbol{G}_{k} has a directed edge $\left(\boldsymbol{v}_{\boldsymbol{i}} \boldsymbol{v}_{i}\right)$ if G has a directed path from v_{i} to v, with intermediate vertices in the set $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right\}$
- We have that $\boldsymbol{G}_{n}=\boldsymbol{G}^{*}$
- In phase \boldsymbol{k}, digraph $\boldsymbol{G}_{\boldsymbol{k}}$ is computed from $\boldsymbol{G}_{\boldsymbol{k}-1}$
- Running time: $\mathrm{O}\left(\mathrm{n}^{3}\right)$,
assuming areAdjacent is $\mathrm{O}(1)$ (e.g., adjacency matrix)

Algorithm FloydWarshall(G)

Input digraph G
Output transitive closure G^{*} of G
$\leftarrow 1$
for all $v \in$ G.vertices()
denote \boldsymbol{v} as \boldsymbol{v}_{i}
$i \leftarrow i+1$
$G_{0} \leftarrow G$
for $k \leftarrow 1$ to n do
$\boldsymbol{G}_{k} \leftarrow \boldsymbol{G}_{k-}$
for $i \leftarrow 1$ to $n(i \neq k)$ do
for $j \leftarrow 1$ to $n(j \neq i, k)$ do
if G_{k-1}.areAdjacent $\left(v_{i}, v_{k}\right) \wedge$
$G_{k-1} \cdot \operatorname{areAdjacent}\left(v_{k}, v_{j}\right)$
if $\neg G_{k}$ areAdjacent $\left(v_{i}, v_{j}\right)$
$\boldsymbol{G}_{\boldsymbol{k}}$ insertDirectedEdge($\left.v_{i}, v_{j}, \boldsymbol{k}\right)$
return G_{n}

Floyd-Warshall, Iteration 1

Floyd-Warshall, Iteration 2

Floyd-Warshall, Iteration 3

Floyd-Warshall, Iteration 4

Floyd-Warshall, Iteration 6

Floyd-Warshall, Conclusion

DAGs and Topological Ordering

- A directed acyclic graph (DAG) is a digraph that has no directed cycles
- A topological ordering of a digraph is a numbering of the vertices such that for every edge ($\boldsymbol{v}_{i}, \boldsymbol{v}_{j}$), we have $i<\boldsymbol{j}$
- Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints
Theorem
A digraph admits a topological ordering if and only if it is a DAG

Topological Sorting

- Number vertices, so that (u, v) in E implies $u<v$

Algorithm for Topological Sorting

Note: This algorithm is different than the one in Goodrich-Tamassia

```
Method TopologicalSort(G)
    H}\leftarrow\boldsymbol{G}\quad// Temporary copy of \boldsymbol{G
    n}\leftarrowG.numVertices(
    while }H\mathrm{ is not empty do
            Let v}\mathrm{ be a vertex with no outgoing edges
            Label v}\leftarrow\boldsymbol{n
            n}\leftarrow\boldsymbol{n-1
            Remove v from }\boldsymbol{H
```

Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$. How...?

Topological Sorting Algorithm using DFS

- Simulate the algorithm by using depth-first search

Algorithm topologicalDFS(G) Input dag G
Output topological ordering of \boldsymbol{G} $n \leftarrow$ G.numVertices()
for all $u \in G . v e r t i c e s()$
setLabel(u, UNEXPLORED)
for all $e \in$ G.edges()
setLabel(e, UNEXPLORED)
for all $\boldsymbol{v} \in$ G.vertices()
if $\operatorname{getLabel}(v)=U N E X P L O R E D$ topologicalDFS(G, v)

- $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time.

Algorithm topologicalDFS(G, v)
Input graph \boldsymbol{G} and a start vertex \boldsymbol{v} of \boldsymbol{G}
Output labeling of the vertices of \boldsymbol{G} in the connected component of v setLabel(v, VISITED)
for all $e \in$ G.incidentEdges(v) if $\operatorname{getLabel}(e)=U N E X P L O R E D$ $w \leftarrow$ opposite (v, e)
if $\operatorname{getLabel}(w)=$ UNEXPLORED setLabel(e, DISCOVERY) topologicalDFS(G, w) else
$\{e$ is a forward or cross edge $\}$ Label \boldsymbol{v} with topological number \boldsymbol{n} $n \leftarrow n-1$

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example

