Graphs

Graphs (§ 12.1)

- A graph is a pair $(\boldsymbol{V}, \boldsymbol{E})$, where
- V is a set of nodes, called vertices
- \boldsymbol{E} is a collection of pairs of vertices, called edges
- Vertices and edges are positions and store elements
- Example:
- A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the

Edge Types

- Directed edge
- ordered pair of vertices (u, v)
- first vertex u is the origin
- second vertex v is the destination

- e.g., a flight
- Undirected edge
- unordered pair of vertices $(\boldsymbol{u}, \boldsymbol{v})$
- e.g., a flight route

- all the edges are directed
- e.g., route network
- Undirected graph
- all the edges are undirected
- e.g., flight network

Applications

- Electronic circuits
- Printed circuit board
- Integrated circuit

Transportation networks

- Highway network
- Flight network
- Computer networks
- Local area network
- Internet
- Web
- Databases

- Entity-relationship diagram

Terminology

- End vertices (or endpoints) of an edge
- U and V are the endpoints of a
- Edges incident on a vertex
- a, d, and b are incident on V
- Adjacent vertices
- U and V are adjacent
- Degree of a vertex
- X has degree 5
- Parallel edges
- h and i are parallel edges

- Self-loop
- j is a self-loop

Terminology (cont.)

- Cycle
- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints
- Simple cycle
- cycle such that all its vertices and edges are distinct
- Examples
- $\left.\mathrm{C}_{1}=(\mathrm{V}, \mathrm{b}, \mathrm{X}, \mathrm{g}, \mathrm{Y}, \mathrm{f}, \mathrm{W}, \mathrm{c}, \mathrm{U}, \mathrm{a}\lrcorner \mathrm{J},\right)$ is a simple cycle
- $\left.\mathrm{C}_{2}=(\mathrm{U}, \mathrm{c}, \mathrm{W}, \mathrm{e}, \mathrm{X}, \mathrm{g}, \mathrm{Y}, \mathrm{f}, \mathrm{W}, \mathrm{d}, \mathrm{V}, \mathrm{a}\lrcorner \mathrm{l},\right)$ is a cycle that is not simple

Properties
Property 1
$\sum_{v} \operatorname{deg}(v)=2 m$
Proof: each edge is
counted twice

Property 2
In an undirected graph with no self-loops and no multiple edges $\boldsymbol{m} \leq \boldsymbol{n}(\boldsymbol{n}-1) / 2$
Proof: each vertex has degree at most $(\boldsymbol{n}-1)$

What is the bound for a directed graph?

Terminology (cont.)

- Path
- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints
- Simple path
- path such that all its vertices and edges are distinct
- Examples
- $P_{1}=(V, b, X, h, Z)$ is a simple path
- $P_{2}=(U, c, W, e, X, g, Y, f, W, d, V)$ is a
 path that is not simple

Main Methods of the Graph ADT

- Vertices and edges
- are positions
store elements
- Accessor methods
- endVertices(e): an array of the two endvertices of e
- opposite(v , e): the vertex opposite of v on e
- areAdjacent(v, w): true iff v and w are adjacent
- replace($\mathrm{v}, \mathrm{x})$: replace element at vertex v with x
- replace (e, x) : replace element at edge e with x

Update methods

- insertVertex(o): insert a vertex storing element o
- insertEdge(v, w, o): insert an edge (v, w) storing element o
- removeVertex(v): remove vertex v (and its incident edges)
removeEdge(e): remove edge e
- Iterator methods
- incidentEdges(v): edges incident to V
- vertices(): all vertices in the graph
edges(): all edges in the graph

Edge List Structure

(§ 12.2.1)

- Vertex object
- element
- reference to position in vertex sequence

- Edge object

Adjacency List Structure

 (§ 12.2.2)* Edge list structure
- Incidence sequence for each vertex
- sequence of references to edge objects of incident edges
- Augmented edge objects
- references to associated positions in incidence sequences of end vertices

Adjacency Matrix Structure (§ 12.2.3)

* Edge list structure
- Augmented vertex objects

- Integer key (index) associated with vertex
- 2D-array adjacency array
- Reference to edge object for adjacent vertices
- Null for non nonadjacent vertices
- The "old fashioned" version just has 0 for no edge and 1 for edge

Asymptotic Performance

\boldsymbol{n} vertices, \boldsymbol{m} edges no parallel edges * no self-loops * Bounds are "big-Oh"	Edge List	Adjacency List	Adjacency Matrix
Space	$\boldsymbol{n}+\boldsymbol{m}$	$\boldsymbol{n}+\boldsymbol{m}$	\boldsymbol{n}^{2}
incidentEdges (\boldsymbol{v})	\boldsymbol{m}	$\operatorname{deg}(\boldsymbol{v})$	\boldsymbol{n}
areAdjacent $(\boldsymbol{v}, \boldsymbol{w})$	\boldsymbol{m}	$\min (\operatorname{deg}(\boldsymbol{v}), \operatorname{deg}(\boldsymbol{w}))$	1
insertVertex (\boldsymbol{o})	1	1	\boldsymbol{n}^{2}
insertEdge $(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{o})$	1	1	1
removeVertex (\boldsymbol{v})	\boldsymbol{m}	$\operatorname{deg}(\boldsymbol{v})$	\boldsymbol{n}^{2}
removeEdge (\boldsymbol{e})	1	1	1

