
Campus Tour 1© 2004 Goodrich, Tamassia

Campus Tour

Campus Tour 2© 2004 Goodrich, Tamassia

Graph Assignment
Goals

Learn and implement the adjacency matrix structure an 
Kruskal’s minimum spanning tree algorithm
Understand and use  the decorator pattern and various JDSL 
classes and interfaces

Your task
Implement the adjacency matrix structure for representing a 
graph
Implement Kruskal’s MST algorithm

Frontend
Computation and visualization of an approximate traveling 
salesperson tour

Campus Tour 3© 2004 Goodrich, Tamassia

Adjacency Matrix Structure
Edge list structure
Augmented vertex 
objects

Integer key (index) 
associated with 
vertex

2D-array adjacency 
array

Reference to edge 
object for adjacent 
vertices
Null for non 
nonadjacent 
vertices

u

v

w
a b

2

1

0

210

∅∅

∅

∅∅

a

u v w0 1 2

b

Campus Tour 4© 2004 Goodrich, Tamassia

Kruskal’s Algorithm
The vertices are 
partitioned into clouds

We start with one cloud 
per vertex
Clouds are merged during 
the execution of the 
algorithm

Partition ADT:
makeSet(o): create set {o} 
and return a locator for 
object o
find(l): return the set of 
the object with locator l
union(A,B): merge sets A 
and B

Algorithm KruskalMSF(G)
Input weighted graph G
Output labeling of the edges of a

minimum spanning forest of G
Q ← new heap-based priority queue
for all v ∈ G.vertices() do

l ← makeSet(v) { elementary cloud }
setLocator(v,l)

for all e ∈ G.edges() do
Q.insert(weight(e), e)

while ¬Q.isEmpty()
e ← Q.removeMin()
[u,v] ← G.endVertices(e)
A ← find(getLocator(u))
B ← find(getLocator(v))
if A ≠ B

setMSFedge(e)
{ merge clouds }
union(A, B)



Campus Tour 5© 2004 Goodrich, Tamassia

Example

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

Campus Tour 6© 2004 Goodrich, Tamassia

Example (contd.)

four steps

tw
o 

st
ep

s

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

B
G

C

A

F

D

4

1 3
5

10

2

8

7

6E

H
11

9

Campus Tour 7© 2004 Goodrich, Tamassia

Partition Implementation
Partition implementation

A set is represented the 
sequence of its elements
A position stores a reference 
back to the sequence itself (for 
operation find)
The position of an element in 
the sequence serves as locator 
for the element in the set
In operation union, we move 
the elements of the smaller 
sequence into to the larger 
sequence

Worst-case running times
makeSet, find: O(1)
union: O(min(nA, nB))

Amortized analysis
Consider a series of k Partiton 
ADT operations that includes 
n makeSet operations 
Each time we move an 
element into a new sequence, 
the size of its set at least 
doubles
An element is moved at most 
log2 n times
Moving an element takes O(1) 
time
The total time for the series 
of operations is O(k + n log n)

Campus Tour 8© 2004 Goodrich, Tamassia

Analysis of Kruskal’s Algorithm
Graph operations

Methods vertices and edges are called once
Method endVertices is called m times

Priority queue operations
We perform m insert operations and m removeMin operations

Partition operations
We perform n makeSet operations, 2m find operations and no 
more than n − 1 union operations 

Label operations
We set vertex labels n times and get them 2m times 

Kruskal’s algorithm runs in time O((n + m) log n) time 
provided the graph has no parallel edges and is 
represented by the adjacency list structure



Campus Tour 9© 2004 Goodrich, Tamassia

Decorator Pattern
Labels are commonly used in 
graph algorithms

Auxiliary data
Output

Examples
DFS: unexplored/visited 
label for vertices and 
unexplored/ forward/back 
labels for edges
Dijkstra and Prim-Jarnik: 
distance, locator, and 
parent labels for vertices
Kruskal: locator label for 
vertices and MSF label for 
edges

The decorator pattern extends 
the methods of the Position 
ADT to support the handling 
of attributes (labels)

has(a): tests whether the 
position has attribute a
get(a): returns the value of 
attribute a
set(a, x): sets to x the value of 
attribute a
destroy(a): removes attribute 
a and its associated value (for 
cleanup purposes) 

The decorator pattern can be 
implemented by storing a 
dictionary of (attribute, value) 
items at each position

Campus Tour 10© 2004 Goodrich, Tamassia

Traveling Salesperson Problem
A tour of a graph is a spanning cycle 
(e.g., a cycle that goes through all 
the vertices)
A traveling salesperson tour of a 
weighted graph is a tour that is 
simple (i.e., no repeated vertices or 
edges) and has has minimum weight
No polynomial-time algorithms are 
known for computing traveling 
salesperson tours
The traveling salesperson problem 
(TSP) is a major open problem in 
computer science

Find a polynomial-time algorithm  
computing a traveling salesperson 
tour or prove that none exists

B
D

C

A

F

E

7
4

2
8

5

3

2

6

1

Example of traveling
salesperson tour
(with weight 17)

Campus Tour 11© 2004 Goodrich, Tamassia

TSP Approximation
We can approximate a TSP tour 
with a tour of at most twice the 
weight for the case of Euclidean 
graphs

Vertices are points in the plane
Every pair of vertices is connected 
by an edge
The weight of an edge is the 
length of the segment joining the 
points

Approximation algorithm
Compute a minimum spanning tree
Form an Eulerian circuit around the 
MST
Transform the circuit into a tour


