Shortest Paths

Weighted Graphs (§ 12.5)

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge
- Edge weights may represent, distances, costs, etc.
- Example:
- In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports

Shortest Paths (§ 12.6)

- Given a weighted graph and two vertices \boldsymbol{u} and \boldsymbol{v}, we want to find a path of minimum total weight between \boldsymbol{u} and \boldsymbol{v}.
- Length of a path is the sum of the weights of its edges.
- Example:
- Shortest path between Providence and Honolulu
- Applications
- Internet packet routing
- Flight reservations

Shortest Path Properties

Property 1:
A subpath of a shortest path is itself a shortest path
Property 2:
There is a tree of shortest paths from a start vertex to all the other vertices
Example:
Tree of shortest paths from Providence

Dijkstra's Algorithm (§ 12.6.1)

- The distance of a vertex v from a vertex s is the length of a shortest path between s and v
- Dijkstra's algorithm computes the distances of all the vertices from a given start vertex s
- Assumptions:
- the graph is connected
- the edges are undirected
- the edge weights are nonnegative
- We grow a "cloud" of vertices, beginning with s and eventually covering all the vertices
- We store with each vertex v a label $d(v)$ representing the distance of \boldsymbol{v} from \boldsymbol{s} in the subgraph consisting of the cloud and its adjacent vertices
- At each step
- We add to the cloud the vertex u outside the cloud with the smallest distance label, $\boldsymbol{d}(\boldsymbol{u})$
- We update the labels of the vertices adjacent to u

Edge Relaxation

- Consider an edge $e=(u, z)$
such that
- u is the vertex most recently added to the cloud
- z is not in the cloud
* The relaxation of edge e updates distance $d(z)$ as
 follows:

$d(z) \leftarrow \min \{d(z), d(u)+\boldsymbol{w e i g h t}(e)\}$

Example

Example (cont.)

Dijkstra's Algorithm

- A priority queue stores the vertices outside the cloud
- Key: distance
- Element: vertex
- Locator-based methods
- insert(k,e) returns a locator
- replaceKey (l, k) changes the key of an item
- We store two labels with each vertex:
- Distance (d(v) label)
- locator in priority queue

Algorithm DijkstraDistances(G, s)

$Q \leftarrow$ new heap-based priority queue
for all $v \in$ G.vertices()
if $v=s$
setDistance $(v, 0)$
else
setDistance (v, ∞)
$l \leftarrow Q . i n s e r t($ getDistance $(v), v)$
setLocator (v, l)
while \neg Q.isEmpty $($
$u \leftarrow$ Q.removeMin(
for all $e \in$ G.incidentEdges(u)
$\{$ relax edge e \}
$z \leftarrow$ G.opposite (u, e)
$r \leftarrow \operatorname{getDistance}(u)+$ weight (e)
if $r<$ getDistance (z)
setDistance $(z, r$)
Q.replaceKey (getLocator(z),r)

Shortest Paths Tree

- Using the template method pattern, we method pattern, we algorithm to return a tree of shortest paths from the start vertex to all other vertices
- We store with each vertex a third label:
- parent edge in the shortest path tree
- In the edge relaxation step, we update the parent label algorithm to returna - +
Algorithm DijkstraShortestPathsTree (G, s)
\ldots
for all $v \in$ G.vertices ()
\ldots
setParent (v, \varnothing)
\ldots
for all $e \in \operatorname{G.incidentEdges(u)}$
$\{$ relax edge $e\}$
$z \leftarrow \operatorname{G.opposite}(u, e)$
$r \leftarrow \operatorname{getDistance}(u)+$ weight (e)
if $r<\operatorname{getDistance}(z)$
$\operatorname{setDistance}(z, r)$
$\operatorname{setParent}(z, e)$
Q.replaceKey $(\operatorname{getLocator}(z), r)$

Analysis of Dijkstra's Algorithm

- Graph operations
- Method incidentEdges is called once for each vertex
- Label operations
- We set/get the distance and locator labels of vertex $z \boldsymbol{O}(\operatorname{deg}(z))$ times
- Setting/getting a label takes $\boldsymbol{O}(1)$ time
- Priority queue operations
- Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $\boldsymbol{O}(\log \boldsymbol{n})$ time
- The key of a vertex in the priority queue is modified at most $\operatorname{deg}(w)$ times, where each key change takes $\boldsymbol{O}(\log n)$ time
- Dijkstra's algorithm runs in $\boldsymbol{O}((\boldsymbol{n}+\boldsymbol{m}) \log \boldsymbol{n})$ time provided the graph is represented by the adjacency list structure
- Recall that $\Sigma_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$
- The running time can also be expressed as $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{n})$ since the graph is connected

Why Dijkstra's Algorithm Works

- Dijkstra's algorithm is based on the greedy method. It adds vertices by increasing distance.
- Suppose it didn't find all shortest distances. Let F be the first wrong vertex the algorithm processed.
- When the previous node, D, on the true shortest path was considered, its distance was correct.
- But the edge (D,F) was relaxed at that time!

- Thus, so long as $d(F) \geq d(D), F^{\prime} s$ distance cannot be wrong. That is, there is no wrong vertex.

Why It Doesn't Work for Negative-Weight Edges

- Dijkstra's algorithm is based on the greedy method. It adds vertices by increasing distance.
- If a node with a negative incident edge were to be added late to the cloud, it could mess up distances for vertices already in the cloud.

C's true distance is 1 , but it is already in the cloud with $\mathrm{d}(\mathrm{C})=5$!

0

Bellman-Ford Example

Nodes are labeled with their $\mathrm{d}(\mathrm{v})$ values

Bellman-Ford Algorithm (not in book)

* Works even with negativeweight edges
- Must assume directed edges (for otherwise we would have negativeweight cycles)
- Iteration i finds all shortest paths that use i edges.
- Running time: O(nm).
- Can be extended to detect a negative-weight cycle if it exists
- How?

Algorithm BellmanFord (G, s)
for all $v \in$ G.vertices()
if $v=s$
setDistance $(v, 0)$
else
setDistance (ν, ∞)
for $i \leftarrow 1$ to $n-1$ do
for each $e \in$ G.edges()
$\{$ relax edge \boldsymbol{e} \}
$u \leftarrow G$.origin(e)
$z \leftarrow$ G.opposite (u, e)
$r \leftarrow \operatorname{getDistance}(u)+$ weight (e)
if $r<$ getDistance (z)
setDistance (z, r)

DAG-based Algorithm (not in book)

Works even with negative-weight edges

- Uses topological order
- Doesn't use any fancy data structures
- Is much faster than Dijkstra's algorithm

Algorithm DagDistances (G, s)
for all $v \in G$.vertices()
if $v=s$.
setDistance(v, 0) else
setDistance (v, ∞)
Perform a topological sort of the vertices for $u \leftarrow 1$ to n do \quad in topological order \} for each $e \in$ G.outEdges(u)
$\{$ relax edge \boldsymbol{e} \}
$z \leftarrow$ G.opposite (u,e)
$r \leftarrow \operatorname{getDistance}(u)+$ weight (e)
if $r<$ getDistance (z)
setDistance (z, r)

DAG Example

