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Foreword

Estonia has a reputation for being a capable and mature IT country. This is enabled by the
very high standard of natural sciences education Estonians had during the Soviet era and,
on the other hand, by our geographical and cultural position. Afterall, Estonia is a country
on the frontiers of the Western and the Eastern civilisations. This enables us to understand
the differences and similarities, threats and opportunities of both cultural hemispheres for
our unique set of intercultural wisdom in understanding Eurasia, and good education level
enables us to innovate.

Due to Estonia’s tiny population (1,3 M1) and moderate GDP (ø22,5 B2), we are not able to
offer neither fundamental inventions nor create principally new technologies for the inter-
national community. However, Estonia has been extremely successful in creating techno-
logical solutions that enable modern e-society, e-governance and digital lifestyle. Among
those are

• nationwide mandatory public key infrastructure (PKI) that enables citizens, institutions
and companies to digitally sign documents,

• X-Road connectivity system that serves as a primary trust anchor for the messaging
system our public and private shareholders’ IT systems use for communication, and,
last but not least,

• a unique and cryptographically strong Internet voting system that we have used 8
times already for local and national elections, with up to one third of ballots cast
electronically over the Internet.

However, as an advanced digital society with a dependency model comparable to the tra-
ditional Western approach, Estonia with its IT-dependent systems is inherently vulnerable
to various threats. These include malicious attacks, administrative mistakes and political
turmoil, but also general human stupidity.

As many of our government and private sector services have been optimised for the e-
society, most of such institutions (e.g. banks and postal service providers) no longer have
enough offices to serve citizens in the physical world alone. These institutions usually only
have a few offices in larger towns.

Because of our tiny economy, it is not economically feasible to serve clients in the traditional
way, face to face – it would be too expensive for the clients, i.e. the Estonian taxpayers.
In the contemporary world, it means that Estonia has no plan B, would the risks on our

1https://www.stat.ee/277564
2https://www.stat.ee/277536
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e-society materialise. If we fail to keep our critically important IT infrastructure running, our
e-lifestyle will collapse, bringing down the whole Estonian society as well.

The Dutch DigiNotar case in 2011 demonstrated the hard choices a country faces if a
PKI supporting its government’s IT systems is compromised. To sustain the society, the
Dutch government had to rely on potentially compromised systems for the contingency of
its operations. The DigiNotar case served as a wake up call for the Estonian politicians who
finally understood the need for our country to plan ahead against similar threats. Estonia
needs to be able to continue its operations in case the trust in Estonia’s PKI fails, some
cryptographic primitive is suddenly broken or the trust in the cryptographic primitives used
for our digital signatures is undermined, rendering the systems supporting our e-society
unreliable and/or untrustworthy.

Therefore, it was decided in 2011 to assemble a scientific task force to analyse the prob-
lems and risks that reliance on cryptography is posing on the sustainable functioning of
our society. One has to take into account that while Estonia has a well-established crypto-
graphic school of thought, the country most likely is not (yet) able to work out and standard-
ise its own cryptographic primitives. Thus, we rely on some known cryptographic algorithms
standardised by some other countries.

Establishment of this scientific task force was delegated to Estonian Information System
Authority3 (Riigi Infosüsteemi Amet or RIA in Estonian). Among other duties, RIA coor-
dinates the development and administration of the state’s information systems, organises
activities related to information security and handles the security incidents that have oc-
curred in Estonian computer networks. RIA also advises the public services and critical
infrastructure providers on how to manage their information systems. For that, RIA partic-
ipates in development of the corresponding requirements, including legal framework and
the baseline protection system ISKE (based on BSI’s IT-Grundschutz).

Therefore, maintaining the state of cryptography that our country depends on was a natural
addition to the portfolio of responsibilities of RIA. After the first report of this task force, it
was clear that we had to keep on updating the reports, as this field keeps on developing.

The report you, dear reader, are reading is the fourth in this series. It is an update, not
a rewrite of previous reports. Nonetheless, we in RIA understand that the problems we
have discovered on our path are generic and valuable for the international audience, espe-
cially for the countries that are following Estonia’s example on the quest for a secure and
sustainable digital society.

Anto Veldre
Estonian Information System Authority

3https://www.ria.ee/en/about-estonian-information-system-authority.html
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1 Introduction

This study is a natural continuation of three previous studies conducted in 2011, 2013 and
2015 [9, 12, 18]. Whereas the two first iterations aimed at giving a self-contained overview
of the status all major cryptographic primitives and protocols in practical use, the report
published in 2015 only contained updates on some specific topics. The current version
follows this approach and only covers certain topics that are of interest from the viewpoint
of information systems used in Estonia in 2016.

However, both the procurer (Estonian Information System Authority) and the authors (Cy-
bernetica’s research team) feel that many of the topics are actually quite universal and
hence subject of a wider international interest. This is the reason why the 2016 report is
the first one in its sequence to be written in English. Even though we do not aim to be
self-contained and may occasionally make back references to the older Estonian versions,
most of the study should be comprehensible without being fluent in Estonian language.

The report is covering both the state of cryptographic primitives and their application in
higher-level protocols. In general, cryptographic primitives are rather well understood and
studied objects. Compared to the frequency of protocol-level vulnerabilities, primitives are
broken rather rarely. However, since many of the primitives are implemented in very low-
level layers of communication infrastructure (often even in hardware), such a break may
have far-reaching consequences.

Luckily, cryptographic primitives are typically not broken overnight. First, some structural
weaknesses are discovered and it takes time to develop exploits based on those findings.
Even then, a considerable amount of computing power may be needed to exploit some
weakness, which may initially not be affordable to all interested parties.

This is why developments in cryptanalysis need to be constantly monitored, and the current
report is one step in the global effort. We will not do a full round through all the major
primitives, but rather present updates to the previous reports [9, 12, 18]. A very thorough
treatment of the matter can also be found in ECRYPT II report [39].

In Estonia, the previous reports have already made tangible impact, with the last example
being our national Certification Authority (CA) AS Sertifitseerimiskeskus stopping the use
of SHA-1 and SHA-224 in time-stamping requests in the beginning of 2016 [30]. We hope
that this report will contribute in improving the security of our digital environment worldwide.

This report covers the following topics. Chapter 2 describes the most prominent weak-
nesses found in 2015 in the TLS/SSL standards and some of its implementations. Chap-
ter 3 reviews the state of one of the most widely used primitives, the RSA public key cryp-
tosystem. We study the difficulty and monetary investment required to break RSA using
various proposed methods, including quantum computers and specialised hardware.
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The 2015 version of the report [18] contained a thorough introduction to elliptic curve cryp-
tography. This time we will only present a short discussion concerning the controversy cre-
ated by the August 2015 NSA announcement (in Chapter 4) and an updated version of the
table summarising implementations of various curves in different libraries (in Appendix B).

Another class of primitives that have got a lot of attention in recent years are hash functions.
Chapter 5 reviews the best currently known attacks against existing constructions (including
SHA-1) and Chapter 6 describes the new SHA-3 standard that was finally accepted in 2015
after years of development.

The rest of the report deals with various application-level protocols and solutions. We start
from an overview of secure computation outsourcing mechanisms (see Chapter 7), being
motivated by the general drive towards cloud computing.

Chapter 8 describes the major candidates for asymmetric primitives in the post-quantum
era. Chapter 9 studies radio frequency authentication tokens and Chapter 10 presents
Mobile-ID protocol analysis. Finally, Chapter 11 draws some conclusions and gives recom-
mendations to improve security of the systems to be deployed.

Acknowledgements
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chapters or giving their feedback after proof-reading. Still, most of the results described
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2 TLS attacks in 2015

Transport Layer Security (TLS) (latest version 1.2 [84], but ver. 1.3 is forthcoming [151]) and
its predecessor, the Secure Sockets Layer (SSL) are presently perhaps the most widely
used protocols for authentication and key agreement over the Internet between two princi-
pals, as well as for securing their traffic afterwards. For the purposes of security analysis,
TLS consists of the handshake protocol for entity authentication and key agreement, and
the record protocol for maintaining a secure channel. The two protocols are intertwined —
while the record protocol uses the keys derived in the handshake protocol, the handshake
protocol itself runs inside the channel provided by the record protocol.

In the handshake protocol, the client and the server first send each other the messages
specifying which protocol versions and cipher suites they support, followed by the mes-
sages containing their certificates and the values from which the master secret for keys
used in the record protocol can be derived. The parties will then switch to the agreed-upon
keys and ciphers (by exchanging ChangeCipherSpec-messages) in the record protocol.
Finally, they send to each other the authenticated hash of all messages exchanged in the
handshake protocol.

A cipher suite specifies the public-key primitives used in the handshake protocol, as well
as the symmetric cipher and message authentication code used in the record protocol.
Depending on the used public-key primitives, the handshake protocol may have a slightly
varying structure. Available cipher suites number in hundreds4.

The TLS protocol specifies an optimisation for faster start-up of the secure channel. It is
possible to save the state of a previous connection between a particular client and server,
and resume its usage afterwards. Such resumption requires less public-key operations to
be performed than a full handshake protocol. Alternatively, it is possible to keep the secure
channel up if it is known that it will be used again in the future.

As the TLS protocol has many different versions and options, it is unlikely that all of them
simultaneously can be accounted for in a security analysis of that protocol. In previous
versions of this report [12], we have attempted to give an overview of existing security
analyses of TLS, we will not repeat it here. In this report, we will give an overview of attacks
against the TLS/SSL protocol and its implementations, and discuss possible remedies.

2.1 Nature of attacks

The attacks against TLS have a variety of causes, genuine errors in protocol logic, leading
to keys becoming known to the adversary or to a mismatch between the views of the client

4https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml

Cryptographic algorithms lifecycle report 2016

June 22, 2016

3.0

9 / 81

https://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml


and the server, being just one of them. Such errors were more prevalent in older versions of
TLS/SSL, particularly in the first versions of SSL, the support of which may still be lingering
around in some applications. The downgrade attacks that first try to make the client and
server agree on an old version of the protocol, are another significant attack class.

The legacy manifests in the TLS protocol set also in some other ways. Up to the year 2000,
the export of cryptographic software and hardware was restricted by the United States, with
exceptions granted only to products that used encryption with at most 40-bit key strength.
This lead to the introduction of cipher suites with short keys. The lifecycle of such security-
crippled cryptographic algorithms was not thoroughly considered and nowadays, these ci-
pher suites may still be supported by some servers. By interfering with the handshake
protocol, it may be possible to convince a client and a server to agree on such a cipher
suite, leading to serious attacks.

Somewhat later, evidence against the security of certain symmetric primitives started
mounting, these primitives include the DES block cipher, the RC4 stream cipher, and the
hash functions MD5 and SHA-1. Support for cipher suites containing these primitives may
still be available. Again, certain attacks against TLS attempt to trick the clients and servers
to use such weak ciphers.

A networked application together with an implementation of secure channels consists of
several different layers, with the implementations of cryptographic primitives being on the
lowest layer. On top of it, there is the layer of cryptographic constructions that turn a block
cipher into a symmetric encryption scheme or a trapdoor one-way permutation into an
asymmetric encryption scheme. The next higher layer is the protocol layer that determines
which messages are sent and when, how they are protected using cryptography and which
checks are made. This layer presents the secure channel abstraction to the application
above it. Some potential weaknesses of this layer have been mentioned in previous para-
graphs. Other layers have also had their share of issues. It has long been known that
the cryptographic constructions in TLS are somewhat different from the provably secure
constructions [47], attacks based on these differences have appeared in recent years. At
the other side of the protocol layer, the details of the secure channel abstraction may be
non-trivial and lead to insecure usage by the application. In particular, there exist attacks
based on the non-hiding of the length of messages inserted into the channel.

The implementation of all layers is also a non-trivial matter. There have been different kinds
of implementation errors which have lead to attacks. Basic programming errors, e.g. buffer
overflows are perhaps the simplest kind, but they have provided the basis of some of the
most well-known attacks. Another basis of attacks is the leakage of the internal protocol
state due to sloppy programming; an attacker can use this to deduce the secrets used in the
record protocol. Such leaks are mostly due to timing; as the logic of all layers is complex, it
is surprisingly difficult to close all timing channels or at least sufficiently reduce their width.
Yet another set of implementation errors is the absence of certain checks demanded by
the protocol logic. In cryptographic protocols, it may be necessary to stop the execution
if the format of the received message does not precisely match the specification, even
though the message itself may still be understandable. The confusion on the necessity of
certain checks is sometimes exacerbated by the lack of clarity in documents specifying the
protocol.

In the following, we present known attacks against TLS/SSL, grouped by the targeted weak-
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nesses. Some attacks make use of several weaknesses, we have grouped them under the
“main” weakness which seems to enable them.

2.2 Attacks against weaknesses in protocol logic

During the lifetime of the secure channel provided by TLS, maintained by running the record
protocol, a renegotiation may be triggered by the parties. In this case, the handshake pro-
tocol is run again, and the keys of the channel are updated. The new handshake protocol
may use different parameters than the original one; this is e.g. used to request the client to
identify itself more strongly if it wants to access a more sensitive resource.

The renegotiation attack [153], discovered in 2009, allowed also the identity of the client
to change during renegotation. In this attack, the attacker holds up the client’s initial con-
nection to the server, establishes a secure channel with the server itself, sends the server
some data and triggers a renegotiation. The attacker releases client’s connection, and lets
the renegotiation proceed between the client and the server, acting as a man in the mid-
dle. At the end of the renegotiation, the attacker can no longer read or inject messages on
the secure channel. Nevertheless, the messages that the attacker previously sent to the
server are now associated with the client and the server thinks they came from the client.
The renegotiation attack was thwarted by an extension to TLS [152], which is supported in
OpenSSL since version 0.9.8m.

Many things are allowed to change during a subsequent handshake, and these changes
together with identifying TLS sessions during resumption have enabled the triple hand-
shake attack [52]. In this attack, the client establishes a session with the attacker, while the
attacker establishes a different session with the server. In both servers, the client won’t be
identified at first. The attacker chooses certain parameters of sessions so, that they can be
mixed up after interrupting and resuming them. During resumption, the attacker connects
the client and the server to each other and causes the client to be identified. At this point,
the client still thinks it is talking to the attacker, but the server thinks it is talking to the client.
More importantly, anything that the attacker sent to the server before interrupting and re-
suming the connections, the server also attributes to the client. After one more handshake,
the client obtains a changed certificate from the server, but this is allowed by TLS specifi-
cation. At the time of publication, the attack was applicable against web browsers. It was
mitigated by changing how the interrupted TLS sessions were identified [51], removing the
possibility to mix up different sessions.

Often, a protocol error stems from the fact that cryptographically protected messages con-
tain too little information about their meaning, allowing the attacker to create confusion in
the recipient of such messages. In [131], an attack is described where the values sent
by the server to the client for computing the master secret, and intended to be interpreted
as the description of a certain elliptic curve and two points on it (for doing Diffie-Hellman
key exchange over an elliptic curve), are modified by the attacker, such that the client
thinks they are parameters for ordinary Diffie-Hellman key exchange. If the attacker can
compute the necessary discrete logarithms (which is not so unlikely, due to the apparent
randomness of the parameters, including also the description of the group), then it can itself
complete the handshake with the client and set up a session where the client still thinks it is
connected to the server. The attack is probably not very significant, because the probability
that the necessary discrete logarithms can be computed, is still low (to the order of 2

�40).
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If the attacker learns a client’s secret key, then it can impersonate this client to any server.
Can it also impersonate servers to this client? In [54], the notion of Key Compromise
Impersonation (KCI) attacks was introduced. It turns out that TLS is not secure against KCI
attacks [110], i.e. servers can be impersonated to a compromised client. This can become
an issue if the installation of client’s certificates and secret keys is handled sloppily, e.g. if
the source of the secret key and the certificate may be malicious. The attack requires both
the client and the server to have fixed (EC)DH key pairs.

2.3 Attacks against insecure cryptographic constructions

Among the various cipher suites defined for TLS, there are those based on RSA encryption.
The “textbook RSA” is semantically insecure, hence it is always used by encapsulating the
plaintext into a format specified in the standard PKCS #1 [1]. This standard has several
versions, and the format specified in PKCS #1 v2.0 [2] has provable security guarantees.

However, TLS makes use of the padding specified in v1.5 of this standard, and this version
of the standard has ubiquitous support in various hardware and software applications. This
is unfortunate, because the famous Bleichenbacher’s attack [56] allows a decryption server
supporting PKCS #1 v1.5 to be used as a decryption oracle, by making a large number of
queries to it with messages related to the message that the attacker wants to decrypt.

There exist countermeasures against this attack [82], but these can in turn be ex-
ploited [117], such that we still have a decryption oracle. In 2012, the complexity of the
original attack was reduced by a couple orders of magnitude [42]. Still, the number mes-
sages is high and requires the connection to be kept alive for many hours after receiving the
challenge from the server in the ServerHello-message, but without completing a hand-
shake. The TLS protocol itself does not contain the means to enforce a timely response
to the challenge. The implementations of TLS or higher-level protocols using it may con-
tain mechanisms to time out the connection, but these mechanisms have been designed
in ad-hoc manner and may be easily circumventable [145]. E.g. for the implementation of
the HTTPS protocol in the Apache web server, it is actually possible to keep the connec-
tion alive for many hours, such that the Bleichenbacher’s attack can be completed [145].
Therefore we have given a suggestion [18] to not use RSA encryption based cipher suites
in applications where the several hours long time for performing a TLS handshake might
pass unnoticed. In interactive applications (e.g. serving the web to browsers), this should
not be an issue.

A secure block cipher can be turned to a secure symmetric encryption scheme and to a
secure channel in a variety of provably secure ways [121]. Unfortunately, the IV-chained
CBC mode of block ciphers specified in a number of cipher suites is not one of these ways
and theoretical weaknesses against it have long been known [40, 41]. The weaknesses
have enabled the BEAST attack [88], if the attacker can control the network traffic between
the client and the server and can also have some control over the messages that the
client sends (e.g. by loading malicious JavaScript to the client’s browser). The BEAST
attack resulted in dropping the support for block ciphers in IV-chained CBC mode since
TLS version 1.1 [83].

In SSL v3.0, the contents of the padding in the protocol records is unspecified, and the
padding itself is not authenticated. This is a weakness that is exploited in the POODLE
attack [136]. Under the same attacker model as for BEAST, the attacker can check the
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equality of certain plaintext bytes in the messages the client sends out, eventually leading
to the leakage of client’s secrets. There is no good mitigation of this attack besides not
using SSL v3.0.

If both the client and the server support SSL v3.0 (due to the need to talk to some parties
that do not support any higher versions of the protocol), then even if they both also support
recent versions of TLS, the attacker may interfere with the initial messages of the hand-
shake protocol, causing them to fall back to SSL v3.0. There is an extension to TLS [135]
that mitigates such downgrade attacks, but the proper way is still to drop the support for
SSL v3.0.

In all versions of TLS, the contents of the padding have been fully specified, rendering the
POODLE attack inoperative. However, some implementations of TLS have turned out to
not strictly check whether the padding of incoming messages corresponds to TLS stan-
dard [123]. These implementations are thus vulnerable to POODLE.

2.4 Attacks against short keys

Certain cipher suites of TLS make use of short, so-called export strength keys, in particular
512-bit RSA or Diffie-Hellman keys. These suites are deprecated since the release of
TLS v1.1 [83], but support is still present in deployed clients and servers. They are a
critical component of the FREAK attack [50], where bugs in client code make it accept a
512-bit RSA key from the server that still supports it and thinks the client was requesting
an export strength cipher suite due to the adversary tampering with the first messages of
the handshake protocol. We describe these bugs in more detail below, as they are really
an implementation error.

Factoring a 512-bit RSA modulus takes hours [50], but as the lifetime of an RSA key is
longer than that (due to the search for 256-bit primes during the generation of the key
being a relatively difficult operation), the attacker can find the factors ahead of mounting
the FREAK attack. Computing discrete logarithms modulo a 512-bit prime is somewhat
more complex. Furthermore, in a Diffie-Hellman key exchange (with ephemeral keys, as is
the usual deployment), new elements of the group are generated in each protocol session.

The Logjam attack [32] is a practical attack against export-strength Diffie-Hellman key ex-
changes, where the discrete logarithm of a fresh group element has to be found. The input
parameters to the discrete logarithm problem are the size of the group p (a 512-bit prime
number), the base element g in this group, and the element h to be logarithmed. The output
is a number y, such that gy = h (mod p). The attack depends on the following two facts:

• The search of a 512-bit safe prime number is a difficult operation. Hence the servers
use the same p for a long time. Even more, there are certain standard primes used
by many servers [143].

• The state-of-the-art algorithms for discrete logarithms only use p (and perhaps g,
which is fixed together with p) for the large majority of their computations. The value
h is only needed at the very end.

Hence, knowing the 512-bit prime the server is going to use, we can do most of the discrete
logarithm computation ahead of time, such that after learning the group element in the
key exchange session, we can find its discrete logarithm sufficiently fast. The authors
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of Logjam report that their precomputations for a fixed p took them slightly over a week
(and consumed over 10 core-years of computing power). Afterwards, the computation of
a discrete logarithm in this group requires on average 10 core-minutes, taking around 70
seconds to compute. They state that their computations are not optimized.

If the server supports export strength Diffie-Hellman key exchange, then forcing the con-
nection down to such cipher suite is again just a matter of tampering with the first hand-
shake messages. After the server has sent the 512-bit group element in authenticated
manner, the attacker can take over and complete the handshake with the client. At the
end of the handshake protocol, the message authentication code has to be applied to the
sequence of messages exchanged during the handshake protocol, but the attacker can do
it because it knows the master secret at that time.

The authors of the Logjam attack also speculate about the complexity of computing discrete
logarithms in larger groups. They estimate that the precomputation for a single 1024-bit
prime requires around 45 million core-years. The entire computation is parallelizable, but
a large fraction of it is not embarassingly parallelizable. They try to estimate the cost of
the hardware that is capable of performing this precomputation in one year (for a single
1024-bit prime). They guess that the cost is in hundreds of millions of dollars (within an
order of magnitude). This is definitely in reach of large countries. After the precomputation,
the computation of a single discrete logarithm requires roughly one core-month, and this
computation is easily parallelizable.

To mitigate the attack, one has to use larger keys or unique 1024-bit groups. In the latter
case, the server has to generate the modulus itself, making sure that it does not have any
weaknesses that may simplify the computation of discrete logarithms in the group it defines.
This modulus will be used in the handshake protocol sessions the server participates in.
The generation of a safe modulus takes significant time (tens of seconds). Another possible
mitigation is switching to elliptic curves, as the current discrete logarithm algorithms for
elliptic curves do not gain as much from precomputation [95].

DROWN [38] is a different attack that relies both on the support of export strength cipher
suites and old versions of TLS/SSL. In this attack scenario, the attacker has captured a TLS
session between a client and a server, where the master secret has been generated from
the pre-master secret that the client sent to the server encrypted with server’s RSA public
key. In order to read the session, the attacker needs to decrypt that pre-master secret.

The attack needs the server (or a different one, but it needs to use the same RSA key) to
support SSL v2.0 and export strength cipher suites. The attacker connects to the server
and chooses SSL v2.0 for the handshake and a cipher suite with export strength (40-bit)
symmetric key. The attacker passes modified captured encrypted pre-master secret as
its own encrypted pre-master secret. The server’s response indicates if this passes as a
valid pre-master secret for the chosen cipher suite. To understand server’s response, the
attacker has to brute-force a 40-bit secret.

For 2048-bit RSA keys, the success probability of the step described in the previous para-
graph is such, that the attacker should have around 1000 captured TLS handshakes and
make around 20000 connections to the server (incurring the computational cost of around
2

50 in the process). After finding a valid SSL v2.0 encrypted pre-master secret, the at-
tacker can use techniques similar to Bleichenbacher’s attack to decrypt it in around 20000
further connections to the server. The obtained plaintext can be transformed back to the
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pre-master secret of one of captured TLS handshakes.

Up to version 1.0.2, OpenSSL contained a bug that allowed a much more efficient attack of
the same kind, without the support for export strength cipher suites. It allows the recovery of
one in 260 TLS session keys using around 17000 connections to the server and negligible
computational resources. The number of targeted keys can be further lowered to 100, with
the expense of extra 10000 connections to the server.

The obvious mitigation to the DROWN attack is to make sure that SSL v2.0 or export
strength cipher suites are not supported.

2.5 Attacks against weak cryptographic primitives

During the lifetime of TLS/SSL, the attacks against several primitives in its cipher suites
have significantly improved. Attacks become possible, if the support for such cipher suites
linger around for too long.

The RC4 stream cipher has been supported in TLS for a long time. Its weaknesses have
also been known for a quite long time: in 2001, the keystream produced by RC4 was
shown to be strongly non-random [91], this weakness was used to break Wired Equivalent
Privacy (WEP). However, the attack was not applicable to TLS/SSL and in the meantime,
the BEAST attack described above increased the popularity of RC4, as this attack applied
only to block ciphers.

Over time, more correlations and biases in RC4 keystreams have been discovered, espe-
cially in the first ⇡ 100 bytes of it [34, 168]. In TLS sessions, if the client is sending any
passwords or secret cookies to the server, then these secrets typically occur at the be-
ginning of the session and are encrypted with the bytes of the keystream that are near its
beginning. Current knowledge about the biases in RC4 keystream allows the guessing of
an RC4-encrypted password in around 2

26 tries on average, using Bayesian analysis [99].
In February 2015, the cipher suites containing RC4 were prohibited from use in TLS [149].

TLS also makes use of hash functions, both in the record protocol (for computing the mes-
sage authentication codes) and in the handshake protocol (when computing the signa-
tures). Often, MD5 or SHA-1 are used for these purposes, with the justification that these
hash functions have been shown to be weak only for the purposes of collision-resistance,
but a weaker property is needed in the TLS protocol. Recently [53], the SLOTH attacks
showed that collision resistance is indeed the property that is needed. These Transcript
Collision Attacks are a form of man-in-the-middle attacks, where the attacker chooses ran-
dom values in two TLS handshake protocol sessions (acting as server in one, and as client
in another session) in a way that makes the hashes of protocol transcripts equal. In the
end, the client and the server have seemingly authenticated each other, but actually each
of them has shared a key with the attacker. An obvious mitigation to these attacks is to stop
using signatures using the MD5 hash function. In the context of the SLOTH attack, SHA-1
is still relatively safe to use, because the sort of collisions needed (chosen-prefix collisions,
see Sec. 5.2) are not yet so easy to find for it.
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2.6 Attacks against misunderstandings in abstractions

Intuitively, a secure channel can be thought of as an opaque pipe: a message goes in
from one end and exits at the other, with the outsiders having no means to observe it
during the transit. The actual secure channels provided by cryptographic protocols are a
bit more transparent — they leak the lengths of communicated messages. If the message
has been compressed before sending, then its length depends on its compressibility, i.e.
on its content [114]. If the attacker knows a part of the message, then the length of the
compressed message tells him something about the similarity of the other parts of the
message to the known part.

The actual attacks using this channel appeared in 2012 and 2013 [89, 45, 106]. They
noticed that if the attacker can change a part of the message then the changes in the
compressed length tell him whether the changed part became more or less similar to other
parts. In the attacks, the attacker has some control over the client’s web browser. He
makes several slightly different queries towards the server, to which the web browser also
appends the secret cookie. Observing the lengths of compressed and encrypted queries,
the attacker learns the secret.

The attack can be mitigated if the messages, the length of which the attacker observes,
are sent uncompressed. However, the compression in the HTTPS protocol is supported
at several levels. TLS record protocol supports compression; switching it off won’t much
affect the performance, because compression is also supported in HTTP. One may also
turn off the HTTP-level compression in queries made by the client, but turning it off in
server responses would seriously hamper performance. It is possible to execute the attack
by only observing the lengths of responses, if the server reflects back the contents of the
queries in the responses, including the secret cookie and the part of the query affected by
the attacker.

The mitigations against compression-based attacks are largely application specific. One
may try to fuzz the length of HTTP responses, or to disable the compression of responses
to cross-site queries [155].

When a client (web browser) makes a query towards an HTTPS-enabled web server, we
expect the created secure channel to be between this client and the server serving this
HTTPS domain. If the server uses virtual hosting, serving many different domains, then
the channels towards different domains may share certificates and/or state. As recently
shown [79], in this case a page from one domain may be loaded under the other’s origin in
the client browser. The countermeasures (proposed in the same paper) include tightening
the configurations of web servers, but there is no single simple countermeasure that works
equally well across all deployment scenarios.

2.7 Attacks against implementation errors

A few cryptographic libraries implement TLS. Errors in these implementations have been
found from time to time, and these can also lead to high-profile attacks. The mitigation
against such attacks is to upgrade to a version where the error has been corrected.
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Attacks against buffer overflows

Perhaps the most famous attack against TLS, Heartbleed [14] resulted from an error
in OpenSSL in implementing the heartbeat extension to TLS. The error only existed in
OpenSSL versions between 1.0.1 and 1.0.1f. It was not present in other branches of
OpenSSL. The description of the error was published in April 7th, 2014, and patched in
OpenSSL version 1.0.1g released on the same day.

The TLS heartbeat extension is intended to keep a TLS channel up at times where there
is no traffic to send. The party interested in maintaining the channel sends a message
to the other party and expects the same message back. The format of the message also
includes the length of the byte string to be repeated. A malicious party may construct a
message, where the alleged length is larger than the actual length of the byte string that
the other party has to send back. The buggy versions of OpenSSL did not verify that the
stated length was not excessively large. Instead, they sent back a message with length
equal to the alleged length of received message. Such response message contained both
the received message, as well as the contents of the memory immediately following it. This
area of memory may have contained values that the other party should not have learned,
e.g. parts of the private key. A good explanation to the Heartbleed bug is given in [140].

Another buffer overflow error, discovered and patched in November 11th, 2014 [15], was
the Winshock error [174] in the Schannel library used by Microsoft’s web browsers and
servers. This error was due to using one method for finding the length of the buffer to be
created, using another method to find the length of the data copied to this buffer, and not
verifying that the second value was not larger than the first [74]. The error could appear
when a certificate was decoded from its transport format, and was henceforth triggerable
by a malicious communication partner.

Timing attacks

The timing attacks against TLS are related to the possibility of using one of the parties in
a TLS session as a padding oracle. If a block cipher is used in the TLS record protocol,
then a message authentication code is first added to the outgoing message, it is then
padded to a multiple of block length, and the result is encrypted using CBC mode. A
padding oracle is created if the recipient of a message, crafted by the attacker, publishes
why the decryption and decoding failed — did the padding have the wrong format, or was
the message authentication code found to be wrong. A padding oracle allows the attacker
to decrypt messages from the record protocol without knowing the session key [169]. The
applicability of padding oracles in web hacking was demonstrated in [156].

A typical way for creating a padding oracle is through timing channels: discovering wrong
padding takes less time than discovering a bad message authentication code. Since ver-
sion 0.9.6i and 0.9.7a, OpenSSL contains protections against padding oracle attacks. Un-
fortunately, modern processor architectures are complex and it is difficult to ensure that the
processing time of a packet is independent of the contents of this packet. The Lucky Thir-
teen attack [35] showed that even a noisy oracle is useful for decryption. Since versions
1.0.1d, 1.0.0k and 0.9.8y, OpenSSL has contained code aimed at thwarting such attacks.

A related class of timing attacks are the cache attacks, where the attacker code runs on
the same processor as the victim code, but in a different process. The goal of the attacker
is to determine a secret used by the victim code. The attacker and victim processes may
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interact to a certain extent, because they share the processor cache. The attacker tries to
bring the cache into a state where the timing of victim’s next steps depends on the value of
the secret. The attacker will then try to measure the time it takes for the victim to execute.

A recent example of such attack is the Cachebleed attack [178]. The authors introduced
cache-bank conflicts and measured the timing variations caused by them. In around 16000
executions, they managed to retrieve the private exponent from the implementation of mod-
ular exponentation in OpenSSL 1.0.2f which already contains state-of-the-art protection
against timing attacks. The authors also proposed a mitigation to the attack — disable
hyperthreading, or only allow it between processes within the same protection domain.

Attacks against missing checks

When implementing complex protocol logic, which is perhaps also presented in somewhat
confusing manner, the implementors may overlook the need for some security checks.
There exists a variety of attacks aimed against such oversights. We have already men-
tioned the POODLE attack which may work on TLS implementations due to them not
checking that the padding of messages has correct value.

An interesting shortcoming was presented in [50], where the complexity of state machines
for supporting TLS handshake was stressed. Depending on the chosen cipher suite and
on other options of the protocol, different messages are expected to be sent and re-
ceived by the parties. For key exchange based on ephemeral Diffie-Hellman, as well
as on export strength RSA, the server is expected to send a ServerKeyExchange mes-
sage, this message should not be sent or accepted for other methods of key exchange.
Also, the messages are expected to come in a certain order, skipping them should not
be allowed. It turned out that in OpenSSL, messages could be sent out of order. In par-
ticular, even if strong RSA-based key exchange was selected, the client still accepted the
ServerKeyExchange-message, using the key in this message instead of the one in server’s
certificate. This bug lead to the FREAK attack, explained above. Another fault, discovered
earlier [52], consisted in both the client and the server accepting a ChangeCipherSpec too
early, before a new key was successfully agreed upon. In this case, the actual key material
could have been generated from a master secret that the attacker was capable of guessing.

In the version of OpenSSL library below 1.0.1i, the server chooses TLS v1.0 as the protocol
version, if the first ClientHello message from the client is too fragmented. This allows an
attacker to perform downgrade attacks. Since version 1.0.1i, a fragmented ClientHello
message leads to the closure of connection instead [13].

Failures in correctly checking the certificate of the other party are really a class of its own,
although they can also be grouped under “missing checks”. In the 2015 version of this
report, we tried to give an overview of such failures, at least in the most used pieces of soft-
ware, but we believe now that this is a futile attempt. The code for validating TLS certificates
in non-browser software has been called “the most dangerous code in the world” [105].
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3 RSA public key cryptosystem

In this Chapter, we will present descriptions and estimates for various attacks against RSA
cryptosystem. The reader should however keep in mind that, to the best of our knowledge,
none of the major attacks have been fully implemented in practice. This means that all the
given resource estimates are imprecise and may be off by a few orders of magnitude.

3.1 Breaking RSA with a classical computer

In recent years, no major cryptanalytic breakthroughs against RSA have occurred. This
means that the security level estimates given in the 2012 ECRYPT II report on crypto-
graphic algorithms and key sizes [39] still hold (see also Table 1).

Table 1. ECRYPT II table for security levels of asymmetric encryption

RSA/DLOG keylength Security level
512 50
768 62
1024 73
1536 89
2048 103

So for example, in order to break RSA-1024 or RSA-2048, one needs to perform respec-
tively about 2

73 or 2

103 operations on a (classical) computer. Based on this, we can give a
rough estimate of the monetary investment needed to perform such computations.

In April 2016, a year of Amazon’s cloud computation package m3.medium costs $3535. For
this price, one gets access to a single-core Intel Xeon E5-2670 v2 (Ivy Bridge) processor
with maximum performance of 3.3 GHz. This gives a yearly performance of

3, 3 · 10

9 · 60 · 60 · 24 · 365 ⇡ 2

56,53

elementary operations. This in turn implies that the investment needed to break RSA-1024
and RSA-2048 with a classical computer is respectively

2

73

2

56,53

· $353 ⇡ $32, 000, 000 and
2

103

2

56,53

· $353 ⇡ $3.44 · 10

16 .

5http://aws.amazon.com/ec2/pricing/, last visited April 21st, 2016
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3.2 Breaking RSA with dedicated hardware

In 2005, Franke et al. proposed a special-purpose hardware device called SHARK that
implemented General Number Field Sieving algorithm for factoring large integers [93]. They
estimate that in year 2005 prices, hardware for an ASIC farm that would be capable of
breaking RSA-1024 in one year would cost about $160 million. Power consumption per
one factoring would add $60 million more.

In 2007, de Meulenaer et al. improved the factoring step within the number field sieve
algorithm using elliptic curve methods [78]. Their estimate is that the production cost of the
resulting hardware would be about $25.8 million.

The method used by de Meulenaer et al. relies on the approach developed by Gaj et
al. [94]. In 2010, Zimmermann et al. claimed to have improved the price-performance ratio
of this approach by factor 37 [179].

All in all, the rough estimate for the investment required to factor one RSA-1024 modulus
is in the order of magnitude $1 million.

3.3 Breaking RSA with a quantum computer

It was already predicted by Richard Feynman in 1980s that a quantum computer may out-
perform classical ones in certain applications. The real breakthrough was made by Peter
Shor who presented an algorithm for finding hidden subgroup orders of large groups in
1994 [159]. This in turn gives rise to algorithms for integer factoring and finding discrete
logarithms.

Since majority of the present-day asymmetric cryptography relies on the assumption of
either the hardness of factoring or computing discrete logarithms, practical implementation
of such a computer would have enormous implications on the cryptographic applications.
Among others, using RSA, DSA, ElGamal and elliptic curve cryptosystems would become
insecure.

To give an idea how factoring using Shor’s algorithm works, consider a toy example of
N = 15 [137]. One starts by picking a random number a 2 [2,N � 1], say, a = 7. First,
we compute gcd(a,N) which can be done fast on a classical computer using Euclidean
algorithm (here gcd stands for the Greatest Common Divisor of the two input numbers).

If gcd(a,N) > 1 then a factor of N has already been found and the algorithm may stop.
Otherwise we know that a 2 Z⇤N , where Z⇤N denotes the multiplicative group of residues
modulo N.

We will be interested in the order of a in group Z⇤N , i.e. the smallest positive integer r such
that ar ⌘ 1 mod N. Alternatively, r is the order of group hai, the subgroup of Z⇤N generated
by a. For N = 15 and a = 7 we would get

hai = {70 ⌘ 1, 71 ⌘ 7, 72 ⌘ 49 ⌘ 4, 73 ⌘ 343 = 13, 74 ⌘ 2401 ⌘ 1, . . .} = {1, 4, 7, 13} ,

hence r = 4.

There is no fast classical algorithm for finding r, but Shor’s algorithm allows to achieve
exactly this on a quantum computer. Due to considerable technical complexity, we leave
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the quantum part for Appendix A. An interested reader can also find further details in G.
Eric Moorhouse’s excellent presentation [138].

If r turns out to be odd, we run the algorithm again, otherwise we can find (classically) the
value of ar/2; essentially a square root of 1 modulo N. If N is a product of two primes (as
in the case of RSA), there will be four possible values of this square root. Two of them (1
and �1) are not interesting and if we hit them, we run the whole algorithm again with a new
choice of a. But for the two others we know that gcd(ar/2 ± 1,N) are non-trivial factors of N.

In case of N = 15, a = 7 and r = 4, we would get

gcd(7

2 + 1, 15) = gcd(50, 15) = 5 and gcd(7

2 � 1, 15) = gcd(48, 15) = 3 .

A straightforward implementation of Shor’s algorithm requires a quantum computer of
3dlog

2

(N)e qubits [137]. So for example factoring 15 would require 12 qubits and factor-
ing a 1024-bit RSA modulus would require 3072 qubits. The latter number is currently
wildly out of reach for the available technology.

In 2016, Monz et al. proposed an improved version of a quantum computer that is able
to factor an n-bit number using only n + 1 qubits (instead of 3n required by classical Shor
algorithm) [137]. However, this improvement in the number of qubits comes for the price of
three times larger running time of the algorithm. As qubits have very short life times, this
poses a great engineering challenge in practice.

The claims of Monz et al. are also disputed by Cao and Liu [71].

There are also other possible implementations of Shor’s algorithm. Interpreting the recent
work by John Martins et al. [43], Jeffrey Morris [139] has estimated the effort required to
break a 2048-bit RSA modulus as given in Table 2.

Table 2. Effort required to break RSA-2048

Parameter Classical computer Quantum computer
Time to run 10 years 24 hours
Size of hardware Server farm covering 1

4

of
North America

100K logical qubits and
200M physical qubits, in less
than a small room

Cost $10

18

$10

11

For comparison, the GDP of USA was approximately $1, 82·10

13 in 2015 [28]. Note also that
the cost estimate for breaking RSA-2048 obtained earlier in this Section was $3.44 · 10

16,
so the truth probably lies somewhere in between.

3.4 Breaking RSA with a D-Wave computer

D-Wave Systems, Inc. is a Canadian company devoted to developing a special kind of
quantum computing device also generally known as D-Wave.

First it needs to be clearly emphasised that D-Wave is not a fully fledged quantum computer
in the sense stated by Richard Feynman. Rather, one can say that D-Wave is to a quantum
computer what an analogue computer is to a classical digital one.
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D-Wave computer is designed to solve very specific kind of optimisation problems, namely
finding global minima for objective functions. It does so by applying a method called quan-
tum annealing which is similar to simulated annealing used on classical computers. Thanks
to a special quantum phenomenon known as quantum tunnelling, quantum annealing can
theoretically outperform the classical version of the algorithm.

Several prototypes of the D-Wave computer have been built and demonstrated. However,
the demonstrations have not been convincing in that they actually can achieve the quantum
speedup. [72].

If the quantum speedup would turn out to be real, it would, in principle, be possible to cre-
ate a device that breaks RSA. For that, one first needs to select a suitable NP-complete
optimisation problem and build a D-Wave computer to solve it. (See the textbook [37] for
further details on NP-completeness.) Since integer factoring problem is in the NP com-
plexity class, one would have a polynomial reduction that would turn an instance of the
factoring problem to an instance of the optimisation problem. Solving the latter one would
give rise to factoring the original RSA modulus.

However, this construction relies on several strong assumptions.

1. D-Wave computer outperforms a classical computer in an asymptotically significant
manner.

2. The function to optimise obtained after the polynomial reduction can be efficiently
implemented on a D-Wave computer.

3. The D-Wave optimisation device really computes global optima of the required func-
tions on a sufficiently large fraction of input instances.

None of these assumptions is yet reliably verified, hence we can consider breaking RSA
with a D-Wave computer to be inconceivable at this point.

In fact, it is conjectured by leading complexity theorists that quantum computers (of any
kind) can not efficiently solve NP-hard problems [92]. At the same time, NP-completeness
of integer factoring is not proved either.

3.5 Transition to 3072-bit RSA

2048-bit RSA is no longer recommended for new implementations requiring long-term (over
10 years) security [39, 160, 18]. However, support for the next logical candidate, 4096-
bit RSA, may be missing or too inefficient on some more limited platforms. Hence, an
intermediate transition step to RSA3072 may be considered.

Even though being less used (and hence also less tested) than RSA2048 and RSA4096,
the deployment of 3072-bit RSA is not expected to cause major problems. In principle,
every installation utilizing RSA4096 should also be capable of handling RSA3072. Still,
making sure that the transition will not cause any problems is responsibility of the imple-
menter.
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4 Elliptic curve cryptography

The 2015 version of the report [18] contained a thorough introduction to elliptic curve cryp-
tography (ECC) together with the required mathematical background. Also, the 2013 re-
port [12] covered patent issues of ECC. Even though the previous reports were in Estonian,
we are not going to translate the corresponding parts here. (This may happen in the future
versions of the report, though.)

Instead, this report only covers the most important updates on the topic. An updated table
of ECC support in various libraries can be found in Appendix B, and the next Section covers
the controversial announcement made by NSA concerning phasing ECC out in favour of
future, not-yet-existing cryptographic primitives.

4.1 NSA Suite B controversy

In August 2015, the U.S. National Security Agency (NSA) released a public announcement
declaring faster-than-previously-planned transition to post-quantum cryptography [17].
Among its implications is rather an unexpected change in recommendations concerning
elliptic curve cryptography. Namely, the use of the curve P-256 is no more recommended,
and only P-384 has remained.

The explanations given by the NSA are rather short-worded and leave a lot of room for
speculations. The theories range from speculating that NSA knows of some non-public
breakthrough, to trying to confuse Russians and Chinese. The main versions have been
analysed by Neal Koblitz and Alfred J. Menezes in their report [119]. The report does not
make any conclusions concerning which version is more likely to be correct. However, it is
interesting to note that Koblitz and Menezes argue that the so-called NIST curves (including
P-256 and P-384) are likely to be free from the backdoors planted during their generation
in 1990s.

From US government point of view, the situation was somewhat clarified by the FAQ re-
leased by the Information Assurance Directorate in January 2016 [21]. It refers to the long
required life cycle (20-30 years) of national security systems as the main reason, together
with the belief that a sufficiently powerful quantum computer will be developed during that
time.

However, assuming that creating sufficiently large quantum computers would become a
reality in near future, both the curves P-256 and P-384 would be broken with comparable
amount of effort. On the other hand, the FAQ conveniently ignores the question why NSA
believes that the curve P-384 is considerably more secure than P-256. It seems likely that
the FAQ only presents part of the story.
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5 Known attacks against hash functions

Hash functions are used in many important security-critical applications like digital signa-
tures, timestamps, message authentication codes and authentication protocols. Attacks
against hash functions may thereby have a large influence on the overall security of elec-
tronic services. Several hash functions (like MD5, SHA-1) that are still in use in some
applications today have been successfully attacked in terms of collisions. As replacing a
hash function in widely used applications tends to be very costly, it is extremely important
to know what exactly are the practical consequences of the collision attacks. Finding a
collision for a hash function does not necessarily mean that the hash function is insecure
in every possible application. Some applications may just need pre-image resistance of
second pre-image resistance, not the full collision-resistance.

5.1 Types of attacks and the notions of hash function security

Several different security properties of hash functions could be assumed based on applica-
tions. Often in formal security proofs, hash functions are assumed to be random functions
(the so-called random oracle model). Having such an assumption in mind, we may define
an attack against a hash function as any method capable of finding input-output pairs for
the hash function in a way that would be infeasible in the random oracle model.

The following three types of attacks against hash function h() are the most common:

• Pre-image attack : given an output y, find an input M for which h(M) = y.

• Second pre-image attack : given an input M, find a different input M0 so that h(M0
) =

h(M).

• Collision attack : find two different inputs M and M0 such that H(M) = H(M0
).

When claiming something about the security of a hash function, we always have to refer
to a particular attack. We say that a hash function is S -secure against a certain attack, if
every possible attack uses at least the time comparable to computing the hash h(M) for S
inputs M. Note that no hash function with n-bit output can be more than:

• 2

n-secure pre-image or second preimage resistant, because using the simple trial
and error method, a pre-image of any output y can be found using about 2

n hash
computations on average.

• 2

n
2 -secure collision-resistant, because using the Birthday attack, a collision can be

found by computing the hash-outputs for about 2

n
2 randomly chosen inputs.

For example, SHA-1 (with 160-bit output) cannot be more than 2

160-secure preimage-
resistant, nor 2

80-secure collision-resistant. MD5 (with 128-bit output) is no more than
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Table 3. Known attacks against hash functions.

Hash function Collision attack (2nd) Pre-image attack
MD2 2

63.3
2

72

MD4 3 operations 2

102

MD5 2

18

2

123.4

SHA-0 2

33.6
2

160

SHA-1 2

60.3
2

160

RIPEMD-160 2

80

2

160

SHA2-256 2

128

2

256

SHA2-512 2

256

2

512

2

128-secure preimage resistant, nor 2

64-secure collision-resistant. In practice, more efficient
collision attacks have been found to both of these hash functions. Table 3 summarises the
status of the most well known hash functions.

5.2 Collision attacks against Merkle-Damgård hash functions

Most of the known practical hash functions have the so-called Merkle-Damgård structure,
which means that the input M is partitioned into blocks M

1

, . . . ,M` of fixed size and then
processed iteratively, taking h

0

= IV (where IV is a fixed initial value) and

hi = F(hi�1

,Mi)

for all i = 1 . . . `. The hash H(M) is defined to be the last-computed value h`. The function
F is called the compression function. For example, MD2, MD4, MD5, SHA-1 and SHA-2
are all Merkle-Damgård hash functions.

The most common types of collision attacks are the following.

Collision attack Find M , M0 so that H(M) = H(M0
). The first collision attack against

MD5 was launched by Wang, Feng, Lai, and Yu in 2004 [171]. No known successful
collision attacks against SHA-1 have been launched. The first theoretical attack (with 2

69

hash steps) was described by Wang, Yin and Yu in 2005 [173]. The best known attack (with
2

60.3 hash steps) was presented by Stevens in 2013 [162]. Grechnikov presented an attack
against the reduced version (74 from 80 rounds) of SHA-1 with 2

35 hash steps [90]. Note
that the general collision attack is not necessarily dangerous in practice, as M and M0 are
not necessarily meaningful messages.

Chosen-prefix collision attack Given two inputs M
1

and M
2

, find continuations M0
1

and
M0

2

, so that M
1

kM0
1

, M
2

kM0
2

but H(M
1

kM0
1

) = H(M
2

kM0
2

). The first chosen-prefix colli-
sion attack (with 2

39 hash steps) against MD5 was launched by Stevens, Lenstra and de
Weger in 2007 [164, 165]. No known chosen-prefix collision attacks have been launched
against SHA-1. The first theoretical attack (with 2

74 hash steps) was published by Stevens
in 2013 [162]. Chosen-prefix collision attacks are indeed dangerous in practice. For exam-
ple, a chosen-prefix collision attack against MD5 was successfully used to forge certificates
of Certification Authorities [166].
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The target of the next attacks is the compression function F of the hash function and hence,
these attacks are not attacks against the full hash function.

Freestart collision attack (or pseudo-collision attack ) Find pairs (V,M) , (V 0,M0
) so

that F(V,M) = F(V 0,M0
). This is equivalent to finding any collision for the compression

function. The first successful free-start collision attack against MD5 was launched and
published by de Boer and Bosselaers in 1993 [81]. The first successful free-start colli-
sion attack (with 2

57.5 hash steps) against SHA-1 was launched and published by Stevens,
Karpman, and Peyrin in 2015 [163].

Semi-freestart collision attack Find M , M0 and V so that F(V,M) = F(V,M0
). The

first successful semi-freestart collision attack against MD5 was launched and published
by Dobbertin in 1996 [86]. No semi-freestart collision attacks against SHA-1 have been
launched.

Near-collision attack Given V and V 0, find M , M0 so that F(V 0,M0
) and F(V,M) differ

by a small number of bits or are “close" in another previously defined way. Near-collision
attacks have no direct practical implications, but they are used as tools in attacks against
the full hash function. For example, near-collisions were used in the the chosen-prefix
collision attack by Stevens in 2013 [162].

Collision attacks against the compression function F of a Merkle-Damgård hash function
H do not necessarily mean a collision attack against the full hash function H, because the
prefix V is not necessarily the right (standard) initial value IV. If V , IV, then in order to
extend a collision (with pairs (V,M) and (V,M0

)) to a collision of the full hash function, one
has to find a prefix W such that H(W) = V, because then indeed H(WkM) = H(WkM0

),
because due to the Merkle-Damgård structure of H:

H(WkM) = F(F(IV,W),M) = F(H(W),M) = F(V,M) = F(V,M0
) = F(F(IV,W),M0

)

= H(WkM0
) .

If, however, an efficient attack is found that for a randomly chosen V finds (with reasonable
probability) M , M0 so that F(V,M) = F(V,M0

), then it would also be efficient to find
collisions for the full hash function. Indeed, one can launch this attack for V = F(IV,W)

where W is a uniformly random prefix to find M and M0 so that F(V,M) = F(V,M0
) and then

H(WkM) = H(WkM0
) as explained above.

5.3 Practical chosen-prefix collision attack against certificates

In 2009, Stevens, Sotirov, Appelbaum, Lenstra, Molnar, Osvik and de Weger [166] showed
that chosen-prefix collision attacks against MD5 can be used to forge real-life web-server
certificates. The idea of the attack is to generate two different X.509 certificates with the
same MD5 hash which is used by a Certification Authority to sign certificates. One cer-
tificate (the rogue certificate) is a so-called CA-certificate that has authority to sign new
certificates (for example to the google.com website) and which many web browsers would
blindly accept and trust. The second certificate, the data of which is presented to the
Certification Authority, is an ordinary user certificate without the right to issue new certifi-
cates. By signing the second certificate, the Certification Authority also implicitly signs the
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rogue certificate, because their hashes match. The rogue certificate can be used to sign
new certificates that might later be used with several e-business related theft schemes.
For example, the attacker is able to simulate arbitrary internet service (like gmail.com or
swedbank.ee), steal passwords, read arbitrary e-mails, etc.

Considering the progress in several attacks against SHA-1 such as Wang et al. [173, 172]
and Stevens [162], and that many Certification Authorities still use SHA-1, it is natural to
study the practical consequences of the rogue certificate attack against different types of
Certification Authorities.

Note that the reliability of root certificates, which are self-signed, does on depend on the se-
curity of the hash function that is used to sign those certificates. Self-signed certificates are
just software containers for public keys and do not provide any security or reliability. The in-
tegrity and authenticity of self-signed certificates has to be achieved with non-cryptographic
(physical, organisational, etc.) means.

5.4 The cost of chosen-prefix collision attacks against SHA-1

Considering the estimations based on the techniques used in collision-attack against SHA-
1 in 2015 [163], the cost of a collision attack against SHA-1 is between 75,000 and 120,000
US dollars when renting Amazon EC2 cloud over a few months, which is about 100 times
lower than estimated in the previous report [12].

As the chosen-prefix collision attacks against SHA-1 are about 2

17 times more costly than
the ordinary collision attack, the estimated cost of the chosen-prefix collision attacks is
between 9.8 to 15.7 billion US dollars, which means that these attacks are already feasible
for large organisations and companies.

5.5 Attacks against existing certificates

Chosen-prefix collision attacks are the only known practically feasible attacks with practical
security implications. Their application against Certification Authorities is only possible
during the process of applying for a new certificate, and cannot be used against the existing
certificates. In order to apply for certificates, the applicants must identify themselves to
Certification Authorities. This means that if a rogue certificate is discovered, the attacker’s
identity can be determined using the logs of Certification Authorities.

At the first glance, much more dangerous attacks are those targeted towards the existing
certificates, because such attacks can be launched without communicating with Certifica-
tion Authorities and without risks of being identified as an attacker. For example, an attacker
may try, based on an existing certificate X, to find a new rogue certificate X0 , X so that
their SHA-1 hashes match. For example, if X is the certificate of an OCSP server of the
Estonian ID-card infrastructure, then the attacker would be able (under certain conditions)
to forge digital signatures of any Estonian eID user.

Note, however, that such an attack is not a collision attack but an attack against the second
pre-image resistance, because X is fixed before the attack. No practical second pre-image
attacks against SHA-1 are known. Moreover, even against MD5, such attacks would take
about 2

123 hash steps, which is about 2

46 (⇡ 10

14) times more than the chosen-prefix colli-
sion attack against SHA-1.
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Table 4 summarises the practical consequences of attacks against hash functions to the
most important electronic services. As we see, second pre-image attacks have the most
serious practical consequences, but such attacks are by far not feasible today, even against
MD4 and MD5 that are totally broken in terms of collisions. General collision attacks can,
in principle, be used to forge digital signatures, but just on meaningless random-looking
documents.

Table 4. Practical consequences of attacks against hash functions.

2nd preimage attack Chosen-prefix collision at-
tack

Collision attack

Attacker stays anonymous yes no no
Impersonation yes yes, with rogue certificates no
Forged signatures yes yes yes, but for meaning-

less documents
Repeatable forgeries yes, with rogue certifi-

cates
yes, with rogue certificates no

Forged time stamps yes yes, with rogue certificates
and only for RFC3161
timestamps

no

Forged archival documents yes, if not times-
tamped securely (with
a new, more secure
hash function) before
the hash function
becomes insecure

no no

Practical feasibility against
MD5

Infeasible, requires
2

123 hash steps
Feasible for everyone, re-
quires 2

39 hash steps
Simple, a few seconds
in ordinary computer

Practical feasibility against
SHA-1

Infeasible, requires
2

160 hash steps
Feasible for large organi-
sations

Feasible for large or-
ganisations

Only the chosen-prefix collision attacks are capable of creating forged signatures on mean-
ingful documents and launching some other practical attacks. The rogue certificate attacks
have central importance here, especially those not requiring direct identification of the ap-
plicant of the certificate. For example, web-server certificates are suitable targets of such
attacks. Hence, the most important practical consequence of chosen-prefix collision at-
tacks and their estimated cost is that SHA-1 must not be used for signing web-server cer-
tificates.
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6 The SHA-3 hash function

The SHA-3 cryptographic hash function standard was released by NIST in August 2015.
The SHA-3 standard is based on the Keccak hash function that was designed by Guido
Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.

During 2006–2012, NIST organised a hash function competition in order to choose a new
hashing algorithm for the upcoming hash standard, SHA-3. The reason was not to re-
place SHA-2 as no practical attacks were known against SHA-2. However, successful
attacks against MD5 and the earlier version of SHA-1 showed that more hash functions
are needed, possibly with the structure that deviates from the standard Merkle-Damgård
design. Indeed, Keccak is based on the so-called sponge design that is somewhat different
from all the previous hash functions. In October 2012, Keccak was selected as the winner
of the competition and after some adjustments concerning

• increased number of rounds,

• simplified padding scheme from a more complex scheme to the 10 ⇤ 1 pattern,

• increased hashing rate (to the maximum rate that the security calculation allowed).

In 2014, NIST published a draft version of FIPS 202 "SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions", and the final version of FIPS 202 was approved
in August 5, 2015 [20].

6.1 Sponge construction

A sponge construction has the following components:

• b-bit state memory S , that is divided into two parts: (1) R of size r (called the bitrate),
and (2) C of size c (called the capacity),

• state transformation function f : S ! S ,

• padding function P that appends bits to the input string in order to adjust the input
length to a multiple of r.

The sponge construction is initialized as follows:

1. The state S is initialized to 0

b;

2. The input p is padded, and divided into r-bit blocks by using the function P.

Then, for all blocks (starting from the first block), the following operations are performed:

1. R is XOR-ed with the r-bit block;
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2. S is replaced by f (S );

3. Next block is taken.

This process resembles absorbing water in a sponge. If there are no blocks left, then the
output is produced with the following process that resembles squeezing water out of the
sponge.

1. Output the r-bit R portion of the state memory S ;

2. If more output bits are needed, S is replaced by f (S ) and the process is repeated.

If the output length is not a multiple of r, it is truncated.

The collision-resistance and preimage-resistance of a sponge-type hash function depends
of the exact construction of f , as well as the parameters r and s.

Figure 1 illustrates this construction.

Figure 1. The sponge construction: padded input message M is converted to the output
hash h(M).

6.2 Padding

Given the bit-rate r and the message length m in bits, the padding algorithm returns a
padding string P such that m + |P| is a positive multiple of r. The padding string is of the
form

P = 1k0 jk1 ,
where j = (�m � 2) mod r and k denotes the concatenation operation.

6.3 State transformation function

In SHA-3, the state S is logically divided into a 5⇥5 array of 64-bit words with total length of
b = 1600 bits. The state transformation function is defined for any power-of-two word size,
w = 2

` bits. In all instances of SHA-3, ` = 6 and w = 64. The state can also be considered
as a 5 ⇥ 5 ⇥ w array of bits. Let A[i][ j][k] be the bit (5i + j) · w + k of the input. Note that all
the index operations are performed mod 5 for the first two indices, and mod w for the third
index.

The state transformation function iterates 12 + 2` = 24 times the following five sub-rounds,
denoted in the standard by Greek letters:
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✓: Find the parity bit of each 5-bit column, and XOR that into two nearby columns in a
regular pattern:

A[i][ j][k] A[i][ j][k] � parity(A[0...4][ j � 1][k]) � parity(A[0...4][ j + 1][k � 1]) .

⇢: Rotate each of the 25 words bitwise by a triangular number 0, 1, 3, 6, 10, 15, . . ., i.e.
A[0][0] is not rotated, and for all 0  t < 24:

A[i][ j][k] A[i][ j][k � (t + 1)(t + 2)/2] ,

where
"

i
j

#
=

"
3 2

1 0

#t "
0

1

#
, where computations are performed mod 5.

⇡: Permute the 25 words in a fixed pattern: A[ j][2i + 3 j] A[i][ j].

�: Bitwise combine along rows, using a a � (¬b&c), i.e.

A[i][ j][k] A[i][ j][k] � ¬A[i][ j + 1][k]&A[i][ j + 2][k] .

◆: XOR a round constant into one word of the state, i.e. in round n, for 0  m  `, the
bit A[0][0][2m � 1] is XOR-ed with bit rc[m + 7n] of an LFSR sequence of degree 8

defined by
rc[t] = (xt

mod x8 + x6 + x5 + x4 + 1) mod x ,

where the computations with the coefficients of the polynomials are always mod 2.
The round constants are represented in Table 5.

Table 5. Round constants for SHA-3 in hexadecimal.

Round Constant Round Constant
0 0000000000000001 1 0000000000008082
2 800000000000808A 3 8000000080008000
4 000000000000808B 5 0000000080000001
6 8000000080008081 7 8000000000008009
8 000000000000008A 9 0000000000000088
10 0000000080008009 11 000000008000000A
12 000000008000808B 13 800000000000008B
14 8000000000008089 15 8000000000008003
16 8000000000008002 17 8000000000000080
18 000000000000800A 19 800000008000000A
20 8000000080008081 21 8000000000008080
22 0000000080000001 23 8000000080008008

6.4 Instances of SHA-3

There are four instances of SHA-3 hash functions, named SHA3-224, SHA3-256, SHA3-
384, and SHA3-512. The last number indicates the output size in bits. This means that all
instances of SHA2 can easily be replaced with the corresponding instances of SHA3 (and
vice versa). For all these four instances, an additional padding of the message (before the
regular padding) is applied: a two-bit suffix 01 is concatenated to the message.
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There are two additional instances SHAKE128 and SHAKE256 of SHA-3 instances that
can be used as extendable-output functions (XOFs), i.e. hash functions in which the output
can be extended to any given length. The suffixes “128” and “256” indicate the security
strengths that these two functions can generally support, in contrast to the suffixes for
the hash functions, which indicate the digest lengths. For these two instances, a different
additional padding of the message (before the regular padding) is applied: a four-bit suffix
1111 is concatenated to the message. This is to distinguish between the input sequences
of the SHA3 and SHAKE families.

Table 6 summarises the instances of SHA-3 family of hash functions.

Table 6. The instances of SHA-3 and their technical and security parameters.

Instance Output size Capacity Block-size Collision
resistance
security bits

Preimage
resistance
security bits

SHA3-224 224 448 1152 112 224
SHA3-256 256 512 1088 128 256
SHA3-384 384 768 832 192 384
SHA3-512 512 1024 576 256 1024
SHAKE128 arbitrary d 256 1344 min(

d
2

, 128) min(d, 128)

SHAKE256 arbitrary d 512 1088 min(

d
2

, 256) min(d, 256)
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7 Secure computation outsourcing

Recent developments in cloud-based environments have made computation outsourcing
more accessible and flexible than ever before. However, vanilla cloud computing environ-
ments are not suitable if the data to be processed has privacy restrictions.

The core of the problem lies within increasing the trusted computing base. In a classical
scenario, where data processing is performed in the analyst’s computer, the computing en-
vironment can, in principle, be controlled. The analyst may be given a background check,
the computer may be cut off the Internet, its firmware intensely scrutinized, etc. However,
in case of computation outsourcing (e.g. to a cloud provider), many hard-to-control compo-
nents are added ranging from the actual cloud hardware used to provide services, to the
cloud provider’s personnel.

While private companies could accept the risks of trusting a third party, say a public cloud
provider by utilizing insurance to mitigate their risks of possible damages caused by the
loss or exposure of their customers’ private information, governments may not be able to
do so – the risk of inadvertently exposing private or government entities and citizens’ data
cannot be adequately measured, nor compensated financially when the risk has realized.
Therefore cost-effectiveness calculations on using public cloud resources for non-public
information may be heavily misleading or incorrect, however tempting these calculations
may seem in an Excel sheet.

Standard state of the art encryption (e.g. AES) protects data privacy while in transit or at
storage. However, when one wants to use that data for analysis, it must be first decrypted.
This means that when outsourcing computations, the data processors must still be trusted
to have access to the data or its decryption key.

Secure multi-party computation (SMC) provides a way to relax this trust requirement as it
enables to compute functions on data without the computation party having access to the
(whole) input. More formally, in SMC, we have multiple parties that want to compute a given
function on their collective inputs. These parties can compute the function so that each of
them gets their (part of the) output. At the same time, SMC guarantees that none of the
parties learn anything more than their own input and their part of the output.

That said, it is important to understand that secure multi-party computation technology is
not a drop-in replacement for applications and services, where plaintext access to individual
data records is necessary, e.g. e-mail and file sharing services or classical information
systems. The technology is most suitable in scenarios where only computation end results
or aggregate values need to be published, e.g. statistical analysis on combined data sets,
benchmark surveys with inputs from mutually distrusting parties and outsourcing resource-
intensive computations. More example scenarios are given in Sections 7.5 and 7.6.
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There are three basic methods to do secure multi-party computation: two-party approach
based on garbled circuits, computing on encrypted data with fully homomorphic encryption
and multi-party computation based on secret sharing schemes. Each of those methods
has different use cases and performance, which we will briefly introduce.

7.1 Garbled circuits

Garbled circuits (GC) is a two-party secure computation approach introduced by Yao in
1980s [176, 177] and later detailed by many others [107, 44, 141]. In GC, there are two
computation parties, both having their own input and the function they want to compute
is given as a Boolean circuit composed of AND, OR, and XOR gates like in an electronic
circuit. Inputs and the functionality are hidden by “garbling” the circuit – replacing all bit
values on wires with randomly generated strings.

One computation party garbles the circuit and the other one evaluates it, while also commu-
nicating with the first party. By the design of garbled circuits, the party evaluating the circuit
receives the computation output. However, depending on the application requirements, it
may be encrypted with only the first party having the decryption key.

This description suggests that the computations are CPU-bound with only a few commu-
nication rounds. The communication load is also asymmetrical, as the evaluator starts its
computations only after the first party has finished. Nevertheless, there are designs, where
the garbled circuit is streamed to the evaluator to reduce this asymmetry and the memory
footprint at the first party [128].

A more in-depth descriptions of the garbled circuit model along with security proofs are
given in [127, 46]. Some practical implementations based on garbled circuits include Fair-
play [129, 48], TASTY [109], FastGC [111] and ABY [80].

7.2 Fully homomorphic encryption

Fully homomorphic encryption (FHE) is a client-server model, where the server performs
computations on encrypted data without access to the private key held by the client. FHE
takes advantage of the homomorphic properties of the underlying public key encryption
scheme. This means that it is possible to modify the value under encryption in a desired
way without decrypting it first.

Practical cryptosystems allow only either homomorphic additions, multiplications or evalu-
ating low-degree polynomials (e.g. many additions with a single multiplication). The reason
for the latter restriction is that each homomorphic operation introduces a small amount of
noise into the ciphertext. As this noise is cumulative, the allowed number of homomor-
phic operations are bounded on a given ciphertext as eventually the ciphertext becomes
impossible to decrypt correctly. In 2009, Gentry proposed to solve this restriction with
bootstrapping – homomorphically re-encrypting the ciphertext under encryption yielding
a fresh noise-free ciphertext [100]. FHE has received a lot of attention and alternative
constructions from the research community [64, 102, 101, 103, 104, 161]. Some of the
practical implementations include HElib [108], hcrypt [148], Stanford’s FHE library [175]
and FHEW [87].

Unfortunately, both homomorphic operations and bootstrapping are costly operations.
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Moreover, in FHE, the ciphertext blow-up from homomorphic operations is significant and
makes the scheme impractical for many applications. Nevertheless, FHE is used as a sub-
operation for non time-critical pre-computations for other SMC systems, e.g. SPDZ [77].

7.3 Secure computation based on secret sharing

Secret sharing [158, 55] is a concept, where a secret value is split into random parts called
“shares” and these shares are distributed among several (usually three or more) indepen-
dent parties. Depending on the secret sharing scheme used, all or at least some threshold
of the total number of shares are needed to reconstruct the original secret value. Any set of
shares less than this threshold gives no information about the secret value. By itself, secret
sharing provides an information-theoretically secure means of storing sensitive data, i.e. it
is secure even against computationally unbounded adversary6.

There are cryptographic protocols that allow to compute on such data by taking secret-
shared values as input and producing secret-shared output values. The latter allows to
chain individual elementary function protocols to build algorithms and privacy-preserving
applications.

In the secret sharing based model it is important to notice that the secret-shared input data
does not have to come from the parties participating in the computation. This allows several
input parties to collaboratively analyse their inputs or link whole data sets by outsourcing
the computation to a set of non-colluding computation parties.

There are several practical implementations of secure multi-party computation based on
secret sharing. Examples include VIFF [76], SEPIA [70], Sharemind [61, 58], Share-
Monad [125], FRESCO [75], SPDZ [77] and ABY [80]. As detailed in Section 7.6, the
secret sharing based SMC technology has also been used in real-world large-scale appli-
cations [63, 62, 59].

7.4 Security considerations

All three described SMC methods require mutually authenticated communication channels
between participating parties. In addition, secret sharing based SMC protocols require
communication channel encryption. The latter is also useful in garbled circuit based ap-
proach to hide the computable functionality (circuit structure) from third parties.

Different SMC protocols are secure in different adversarial models. The two most common
such models are active and passive security. In the passive model, the protocol remains
secure if the computation parties are only allowed to analyse the shares available to them
in order to deduce some extra information. However, in the passive model the computation
parties are required to follow the agreed upon protocol and not change the values provided
to them. In contrast, protocols that are secure in the active model allow arbitrary deviations.

While clearly superior in security, actively secure SMC protocols require computation verifi-
cation that introduces a significant performance penalty. In many practical scenarios, where
the non-collusion of computation parties can be guaranteed, e.g. by finding suitably moti-
vated parties, the passive model provides a reasonable security-performance trade-off. For

6However, in practical implementations, pseudo-random number generators are used to generate random
shares. Moreover, encrypted communication channels (e.g. TLS) are only computationally secure.
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example, all three aforementioned practical secret sharing based SMC applications worked
in the passive model.

7.5 Applications and performance

The three described SMC methods are all applicable in different use cases. Fully ho-
momorphic encryption is best suited for a single entity to outsource computations on its
confidential data to an untrusted server, e.g. cloud. Garbled circuits approach can be used
by two mutually distrusting parties to compute a common function on their inputs. Secret
sharing based secure computing is best suited in scenarios, where individual secret values
or data sets are combined and aggregated from several input parties.

As the described methods are fundamentally different, it is almost impossible to compare
their performance on application level. However, there are individual algorithms that are ac-
cepted by the research community for benchmarking. For example, Figure 2, published in
the secure computation maturity overview by Archer, Bogdanov, Pinkas and Pullonen [36],
shows AES-128 block cipher performance for different implementations of SMC. As seen,
implementations based on linear secret sharing (LSS) give the lowest amortised running
time.

Figure 2. Comparison of SMC paradigms using the AES-128 block cipher [36].

Cryptographic algorithms lifecycle report 2016

June 22, 2016

3.0

36 / 81



7.6 Practical deployments

Next, we will give a brief overview of three practical SMC applications that worked on
real-life data. All of these applications used secure multi-party protocols based on secret
sharing and worked in the passive security model.

The first practical SMC application was deployed in Denmark in 2008, where it was used
to implement a double auction in order to redistribute sugar beet growing contracts [63]. In
double auction, every seller and every buyer makes a bid on how much goods he is willing
to sell or buy for each of price from a predetermined set. Based on these bids, the trusted
auctioneer computes the most optimal market clearing price, where total demand equals
total supply.

In this deployment the role of the trusted auctioneer was distributed among the three se-
cure multi-party computation parties – the sugar beet growing farmers association DKS,
the sugar producer Danisco and the technology provider SIMAP project. Using SMC to
compute the market clearing price guaranteed that the auctioneer learns no extra informa-
tion about individual bids that could be possibly abused. The users used a Java applet
obtained from a web page to enter their bids for all 4,000 pre-configured price points. In
this deployment the secret-shared bids were not distributed directly between the computa-
tion nodes as they were not online in this phase. Instead, the applet encrypted each of the
three shares independently with the public key of the corresponding computation party and
stored all encrypted shares in a central proxy server.

In the second phase of the auction, the representatives of the computation parties gath-
ered together, downloaded their encrypted shares from the central database, decrypted
them with the corresponding private key in their possession and started the secure multi-
party computation process. The necessary multi-party computation operations were fairly
simple – the market clearing price was found by binary search using about twelve oblivious
comparisons. The computation itself was carried out over local area network and lasted
about 30 minutes, the bulk of which was spent on decrypting shares.

The next practical SMC application working on real data was deployed in Estonia in
2011 [62]. It was deployed for the Estonian Association of Information Technology and
Telecommunications (officially abbr. as ITL) members to compare their financial indicators
with each other and thus get an up-to-date overview of the local ICT sector. The appli-
cation used the Sharemind SMC implementation with three computation parties hosted by
ITL members Zone Media, Microlink and Cybernetica. To make data input more convenient
for the participants, it was provided as a web-based form integrated into the member area
of the ITL web page. The input financial indicators were secret shared using a JavaScript
library in the end user’s web browser and distributed directly among the three computation
parties over secure HTTPS connections.

The analysis step itself was simple and consisted only of sorting values of each financial
indicator independently. This hid the connections between different indicators for the same
company and the sorted vectors could be published to the ITL Board for further analysis.
Although the number of participants was small, it is the first practical SMC application
where the computation is carried over the internet. ITL used this application twice in 2011.

In 2015, a privacy-preserving statistical study using SMC technology was conducted in
Estonia in order to find connections between working during university studies and failing
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to graduate in time [59]. The study used the Sharemind secure multi-party computation
framework to securely link together and analyse the education information from the Ministry
of Education and Research and the income tax data from the Estonian Tax and Customs
Board. The data owners used special data import applications to secret share and upload
their data sets to the three computation parties hosted by the Estonian Information System
Authority, the Ministry of Finance IT Centre (also the IT department for the Tax and Customs
Board) and the technology provider Cybernetica.

In this deployment, the privacy-preserving analysis part was substantial and was carried
out by a professional statistician at the Estonian Center for Applied Research. The statis-
tician used the Rmind tool [60] in order to perform necessary data transformations and
analysis on the imported data sets. In its functionality and user interface, Rmind is very
similar to the popular open source statistical analysis suite R [150], with the exception that
all privacy-preserving operations are carried out using SMC protocols by the computation
parties. With its input of over 10 million tax records and 600,000 education records, this
deployment is the first large-scale registry-based statistical study using secure multi-party
computation technology. Moreover, for the first time, the non-collusion of the computation
parties in an SMC deployment was enforced by a contract.
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8 Post-quantum cryptography

8.1 Quantum computers

Quantum computers are able to perform parallel computations by using the superposition
principle from quantum mechanics by which the microscopic processes in nature evolve
in parallel via all possible paths until an observation is made after which one concrete
path is chosen randomly. For example, an n-bit quantum register, having been suitably
prepared, may be simultaneously in all 2

n possible states. Such a hybrid state is called a
superposition. Every function f (x) may be implemented as a quantum circuit the input of
which is a superposition of all possible arguments x and the output is a superposition of all
possible values y = f (x) of the function. This resembles the classical parallel computation
where 2

n threads run in parallel, but one needs 2

n times more computational resources for
making classical parallel computation as fast as a single thread.

In quantum computers, such a parallelism comes almost for free, i.e. 2

n parallel quantum
threads use the same amount of computational resources as one single thread. The prob-
lem is that these threads are not simultaneously accessible. If one measures (reads) the
output of the quantum circuit, we just have a randomly chosen output value y = f (x). Such
a parallel computation would give us nothing compared to a classical single-thread com-
putation, because it is equivalent to just computing the output f (x) for a randomly chosen
input x.

In classical parallel computing, all threads and their computational results are simultane-
ously accessible and arbitrary inter-thread communication is possible. In quantum paral-
lelism, the information exchange between the threads is extremely limited. For example,
if all threads compute a single bit (a predicate) then it is not known whether it is possible
to compute the product of the output bits of all threads (which is 1 if and only if all threads
output 1). If this would be possible, then quantum computers would be able to solve NP-
complete problems in polynomial time.

One problem that quantum computers can efficiently solve (by using Shor’s quantum algo-
rithm, see Appendix A or [159]) is finding a period of a function. By a period of a function
f we mean a positive integer � such that f (x + �) = f (x) for all x. For example, if for the
RSA public key encryption function E(m) = me

mod n we know the period of the (efficiently
computable) function f (x) = ax

mod n, which with high probability (if a has been chosen
randomly from the interval (0...n)) equals to the so-called Carmichael function �(n), then
we can compute the RSA secret exponent d = 1

e mod �(n). This means that the RSA cryp-
tosystem can be efficiently broken with quantum computers. For similar reasons, also the
elliptic curve cryptosystems can be broken.

For some cryptosystems there are no known relations between finding the private key and
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finding a period of a public function. Therefore, for breaking such cryptosystems, it is
unknown whether quantum algorithms would give any advantage over the classical ones.

8.2 What is post-quantum cryptography?

Post-quantum cryptography is a common name for all cryptosystems that are resistant to
attacks supported by quantum computers. The security of today’s widely used public key
cryptosystems mostly reduces to the computational hardness of the factoring or the dis-
crete logarithm problems that both are breakable by quantum algorithms. From the very
first years of public key cryptography, a few cryptographic algorithms have been known
that are believed to be quantum-safe today. One of them is the Lamport’s digital signa-
ture scheme. From the year 2005 onwards, cryptographers have been searching for new
quantum-resistant algorithms systematically.

Post-quantum cryptography studies four types of cryptographic algorithms:

• lattice-based,

• multi-variate,

• hash-based,

• code-based.

Ordinary block-ciphers (like AES) are also believed to be quantum-safe but for some rea-
sons block-ciphers are not considered to belong to the area of post-quantum cryptography.

8.3 Lattice-based cryptography

Lattices were first studied by Joseph Louis Lagrange ja Carl Friedrich Gauss. In cryptogra-
phy, lattices have been used, for example, to break the pseudo-random generators that are
based on numerical congruences. In 1996, Miklós Ajtai [33] showed first time that lattices
can also be used to create new cryptosystems. In 2009, Craig Gentry [100] used lattices
to construct the first fully homomorphic cryptosystem.

By a lattice7 we mean a discrete subset of the vectors (points) in the Euclidean space Rn,
that is closed under addition and subtraction of vectors. We say that the lattice has dimen-
sion n if it is not contained in any proper (lower-dimensional) subspace of Rn. Visually, a
lattice is a set of points placed regularly all over the whole space. As an algebraic system,
a lattice is a finitely generated free Abelian group.

By a basis of a lattice L we mean a set B of vectors such that any point (vector) of L can
be expressed as a linear combination (with integer coefficients) of the elements of B. If the
dimension of the lattice is at least 2, there are always infinitely many different bases in the
lattice. In cryptography, the plaintext, the ciphertext and the key must be of finite size and
therefore, the lattices in cryptography are not the subsets of Rn but Kn, where K is a finite
field.

The security of lattice-based cryptosystems reduces to the following two hard combinatorial
problems:

7Lattice also has another meaning in mathematics that is related to partially ordered sets.
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• Shortest vector problem: Find the shortest vector in a lattice L (represented by a
basis B).

• Closest vector problem: Given a basis B of a lattice L and a lattice-vector v < L, find
a vector v0 2 L that is closest to v.

These problems are believed to be hard in general case, i.e. for majority of bases B. If
the basis vectors are short and almost orthogonal, then both problems become efficiently
solvable. Finding such a basis in a lattice is also called lattice basis reduction and the most
famous algorithm for the reduction is the Lenstra–Lenstra–Lovász (LLL) algorithm [126].

Based on the security arguments, the lattice-based cryptosystems are divided into two
groups:

• Efficient, but not provably secure. Their efficiency is comparable to the best known
algorithms. For example, the NTRU algorithm belongs to this group.

• Provably secure, but less efficient. For example the algorithms that are based on the
Learning with Errors (LWE) combinatorial problem.

The learning with errors in rings (Ring-LWE) is a combinatorial problem that enables to
construct cryptosystems that are relatively efficient and provably secure.

8.4 Multi-variate cryptography

It has been proven that the problem of solving multi-variate algebraic equations is NP-hard
or NP-complete and theoreticians think that quantum computers cannot solve NP-complete
problems in polynomial time [92]. Hence, the cryptosystems the security of which is based
on the hardness of solving multi-variate equations are suitable candidates for post-quantum
cryptography.

To date, only multi-variate signature schemes are known such as Unbalanced Oil and
Vinegar (UOV) [116], Hidden Field Equations (HFE), Hidden Field Equation Vinegar
(HFEv) [147] and Rainbow [85]. These signature schemes are computationally efficient
and are suitable for using in the devices of low computational power (e.g. smart-cards), but
require relatively large keys (a few kilobytes).

Almost all multi-variate encryption schemes have been broken. For example, the Imai-
Matsumoto encryption scheme that was presented in 1988 was broken by Patarin in 1995.
Patarin’s own encryption scheme Little Dragon [146] that was proposed in 1995 was broken
by Coppersmith and Patarin himself in 1996 [118].

The combinatorial multi-variate problem used in cryptography is solving systems of alge-
braic equations over finite fields such as Z

2

= {0, 1} where the following systems of equa-
tions has to be solved:

P
1
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1
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, . . . , x
2n) = y

1

P
2

(x
1

, x
2

, . . . , x
2n) = y

2

. . .
Pn(x

1

, x
2

, . . . , x
2n) = yn ,

(1)

where P
1

, . . . , Pn 2 Z[x
1

, . . . , x
2n] are polynomials of degree not higher than two.

A signature scheme that is based on this problem may use the descriptions of the polyno-
mials P

1

, . . . , Pn as the public key. The signature of a message M has 3n bits and consists
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of a 2n-bit representation of the values of x
1

, . . . , x
2n and of an n-bit random number r, such

that:
H(r,M) = P

1

(x
1

, . . . , x
2n)k . . . kPn(x

1

, . . . , x
2n) ,

where H is a hash function with n-bit output. To sign M, one has to compute the hash
H(r,M) = y

1

y
2

. . . yn using the random number r and then solve the system (1). The poly-
nomials Pi are chosen in a way that once we know their secret structure – the so-called
HFE (Hidden Field Equation) structure – the system is easy to solve, but there is no effi-
cient ways known for discovering such a structure from the public key and from the already
created signatures. Such a signature scheme was proposed by Patarin in 1996 [147] and
it is still considered secure.

8.5 Hash-based cryptography

The hash-based signature schemes of Lamport and Merkle are among the very first signa-
ture schemes that were proposed in late 1970s. Hash-based signature schemes have been
studied for a long time. They are considered to be secure assuming that the corresponding
hash function is secure. The main drawback of most hash-based signature schemes is the
limited number of possible signatures.

For signing one single bit b with the Lamport’s signature scheme we need a private key
that consists of two n-bit (pseudo-) random numbers k

0

and k
1

. The public key is a pair
f (k

0

), f (k
1

), where f is a one-way function (such as a hash function). To sign b 2 {0, 1} the
signer publishes the corresponding half kb of the private key and deletes the other half k

1�b.
One key can only be used for signing a single bit.

For signing a longer message M one needs a hash function H with n-bit output and n (for
example, n = 256) private keys (k1

0

, k1

1

), . . . , (kn
0

, kn
1

). The message M is first hashed and then
every bit yi of the hash y = y

1

y
2

. . . yn = H(M) is signed with the key (ki
0

, ki
1

) as described
above. The size of the signature is n2 = 256 · 256 = 65536 bits (about 8 kilobytes). The size
of the public key is 16 kilobytes.

Pseudorandom generators can be used to decrease the size of the private key so that all
components ki

j are computed from one single random seed.

Merkle’s signature scheme is an improved version of the Lamport’s signature scheme that,
in order to reduce the size of the public key, uses a hash tree the root hash of which is
the public key. Merkle’s signature scheme enables to sign many messages with the same
public key, although their number is limited. In Merkle’s signature scheme that enables to
sign m messages, the signature size is n2 + n log

2

m bits which is not much larger than in
the Lamport’s one way signature scheme. For example, if m = 1024 and n = 256, then
the size of the signature is 256 · (256 + 10) bits (about 8.5 kilobytes). The security of the
Merkle’s signature scheme is based on the collision-freeness of the hash function.

In 2011, a modification of the Merkle’s signature scheme, the so-called XMSS, was pro-
posed [66] in which for n = 256 the size of a signature has been reduced to about 1.8
kilobytes.

In 2014, a different modification, the so-called BLT, of the Merkle’s signature scheme was
proposed by Buldas, Laanoja and Truu [69, 67, 68], where the signature size can be consid-
erably reduced. A private key for signing a single message consists of just one n-bit hash,
but signing is only possible in cooperation with a server. To sign a message M at time t one
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needs a special key kt that is intended for signing messages only at time t. The signer first
computes the hash H(M) and sends the server a signing query Q(H(M), kt) that combines
the hash H(M) and the corresponding private key kt. The server sends back a time stamp
S T (Q(H(M), kt)). The signature is valid only if the time T in the time stamp coincides with
the intended usage-time t of the private key kt. Hence, for obtaining a correct signature
requires synchronized clocks at least with one-second precision. The size of the signature,
if m ⇡ 2

25 (the number of seconds per year) is 25 · 256 bits (about 800 bytes). Probably,
the collision-freeness assumption is insufficient for proving the security of the BLT scheme,
and one has to use stronger assumptions about the hash function.

The SPHINCS signature scheme [49] is the first hash-based signature scheme that is
stateless, i.e. there is no need to keep track on the number of already created signatures
(i.e. to manage the state of the private key) not to communicate with the server. SPHINCS
uses private and public keys of size about 1 kilobyte, but the size of the signature is about 42

kilobytes. The security of the scheme is based on the collision-freeness without additional
assumptions.

8.6 Code-based cryptography

Code-based cryptography uses the properties of error-correction codes. There exist both
code-based encryption schemes [132] and code-based signature schemes [142].

The combinatorial problem behind the McElice’s encryption scheme is the decoding prob-
lem of a general liner code, i.e. the so-called closest code-word problem. By a linear code
we mean a set C of vectors is an n-dimensional vector space over the finite field Fq, such
that C is closed under addition and scalar multiplication. This also means that C is a k-
dimensional subspace of the vector space Fn

q. The dimension k of C is called the rank of C.
The closest code-word problem is to find the closest (in terms of the Hamming distance)
vector in C for a given vector x in Fn

q. It has been proven that the most general version of this
problem is NP-hard. However, for many special cases and for limited errors, this problem
is efficiently solvable, for example, if the Hamming distance of x from C does not exceed
half of the minimal distance of the code (i.e. the minimal Hamming distance between the
elements of C).

The private key in this scheme is a randomly chosen linear code, for which there is an ef-
ficient decoding algorithm. In the original version of McElice’s cryptosystem, binary Goppa
codes are used that are efficiently decodable via the Patterson algorithm and that are ca-
pable of correcting up to t-bit errors. The public key is obtained with masking the code with
general linear code. If G is the generating matrix of the code (the row-vectors of which form
the basis of the code as a subspace), then the public key G0 is obtained by using randomly
chosen invertible matrices S and P as follows:

G0 = S ·G · P ,
where · means matrix multiplication. Also, P is a permutation matrix each row and column
of which have exactly one 1 and the rest of the elements are equal to 0.

To encrypt a message m with McElice’s cryptosystem, one first encodes m as a t-bit binary
string, then computes a vector c0 = mG0, generates an n-bit random vector z with exactly t
components equal to 1 and the rest of the components equal to 0, and creates a ciphertext
c = c0 + z, which is a codeword with a t-bit random error.
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To decrypt the ciphertext one first computes c0 = cP�1 by using the inverse matrix P�1 of P,
decodes c0 by finding m0 and the plaintext m = m0S �1. Decryption is correct because

c0 = cP�1 = mG0P�1 + zP�1 = mS G + zP�1 ,

mS G is a code-word and the Hamming norm of the vector zP�1 does not exceed t (because
P is a permutation matrix).

McElice’s cryptosystem is very efficient in terms of key generation, encryption and decryp-
tion speeds, but its main drawback is a very large public key. For example, for gaining
2

128-security, one has to use public keys of size about 100 kilobytes.

8.7 Standards and implementations

The only post-quantum cryptosystem that has made it successfully to major standards
is NTRU [4, 7]. It is also the one with the most advanced practical implementations 8

9. However, the most widely used cryptographic libraries (such as OpenSSL and Bouncy
Castle) do not support post-quantum cryptographic algorithms.

European Telecommunications Standards Institute (ETSI) has published a set of standards
concerning quantum key distribution [8]. In 2015, ETSI also launched a Quantum Safe
Cryptography specification group 10 which has produced a whitepaper report [19].

8http://tbuktu.github.io/ntru/
9https://github.com/NTRUOpenSourceProject/ntru-crypto

10ETSI launches Quantum Safe Cryptography specification group, http://www.etsi.org/news-events/
news/947-2015-03-news-etsi-launches-quantum-safe-cryptography-specification-group
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9 Cryptographic protocols over radio
connection

There are two large classes of radio frequency cards used in practical identification appli-
cations (door access, public transportation, customer loyalty, etc.).

Simpler ones, operating on 125kHz frequency range (e.g. EM Unique, HID Prox and IN-
DALA), do not support any cryptographic capabilities like encryption or challenge-response
authentication. Identification is performed by simply transmitting a pre-coded signal over
the radio connection [157]. Consequently, the entity authentication solutions built on top of
such cards are subjects to trivial cloning and replay attacks – these solutions should not be
deployed in environments where cloning resistance is a desired objective.

Cards operating on a 13.56GHz frequency range (also called Near-Field Communication,
or NFC cards) can be made to implement more sophisticated protocols. In this chapter we
will take a look at several examples of this class of cards.

9.1 MIFARE cards

One of the first widely deployed cards in this family was MIFARE Classic, used e.g. in Lon-
don’s Oyster card, Netherland’s OV-Chipcard, US Boston’s CharlieCard, and in numerous
wireless access control and ticketing systems worldwide [73].

MIFARE Classic implemented an ISO 9798-2-inspired mutual authentication protocol re-
lying on a proprietary CRYPTO1 stream cipher [98]. After reverse engineering, the pseu-
dorandom bit string generated by the cipher turned out to be weak, allowing for various
exploits [120, 73, 98]. As a result, MIFARE Classic should be avoided in any deployments.

There are also MIFARE cards offering stronger cryptographic algorithms; for example DES-
Fire EV1 supporting AES-128 [112]. AES is used as the main building block in a protocol
allowing to mutually authenticate the card and the reader, and to create a session key for
further communication. See Section 9.2 for a more detailed description of the protocol.

As AES is a symmetric algorithm, the deployment of such cards in a large scale authentica-
tion infrastructure project presumes that the same private symmetric key is shared between
many cards. This is a concern if physical security measures of the card are circumvented
and the secret key is extracted from one card. In case of an earlier MIFARE DESFire card
MF3ICD40, this has been shown to be possible with side-channel attacks using relatively
low-cost hardware by Oswald et al. [144].

NXP, the company behind the MIFARE product line, has claimed that the EV1 card is Com-

Cryptographic algorithms lifecycle report 2016

June 22, 2016

3.0

45 / 81



mon Criteria EAL 4+ certified and that the attack by Oswald et al. failed for EV1.11 However,
Kasper et al. claim to have also a successful side-channel attack against EV1 [113].

In 2013, NXP announced the release of MIFARE DESFire EV2 generation of cards.12 The
need to share the same master key among all the users of all the services has been ad-
dressed by introducing the option of using different keys for different services. However,
the only cryptographic algorithms supported by EV2 are still symmetric ones (AES, 3DES
and DES). This means that all the communicating components must share the same key.
Hence, the problem of extracting the key from any of them and reusing it for card cloning
still remains.

A systematic way of solving this problem would be using asymmetric cryptography and
public key infrastructure, but unfortunately this solution is considerably more resource-
consuming.

9.2 MIFARE EV1 and Ultralight C authentication protocol

MIFARE Ultralight C was designed to replace the Classic product line in the low-end (even
disposable) tag applications. Still, it provides a cryptographic authentication mechanism
similar to EV1.

The authentication protocol looks roughly as follows [112, 133]. In this protocol, ek de-
notes the symmetric cryptographic cipher used (AES in case of EV1 and 3DES in case of
Ultralight C). Note that we have omitted some technical details (in practice, some of the
generated random values are also shifted on some steps).

1. Reader! Tag: Hello.

2. Tag generates a random number rb.

3. Tag! Reader: ek(rb).

4. Reader decrypts rb and generates another random number ra.

5. Reader! Tag: ek(ra rb).

6. Tag decrypts the last message and extracts ra.

7. Tag! Reader: ek(ra).

In the end of the protocol, both participants are expected to be convinced that the other
party also knows the shared key k.

This protocol relies on the tag’s ability to generate random numbers. Merhi et al. analysed
the quality of the random number generator on Ultralight C and concluded that it is much
better than the one used for MIFARE Classic [133]. They used standard randomness tests
on the bit stream generated by the tag, and it passed all the tests.

Hence the attacks making use of weak pseudorandomness are less likely to succeed for
Utralight C. However, we advise against the usage of the deprecated 3DES algorithm (es-
pecially since it seems to be used in 2 key setup [133], giving the efficient keylength of 112
bits).

11https://www.mifare.net/en/update-on-mifare-desfire-mf3icd40/
12https://www.mifare.net/en/products/chip-card-ics/mifare-desfire/mifare-desfire-

ev2/
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9.3 HID iClass

iClass by HID Global is another popular line of NFC cards working on the 13.56 MHz
frequency range. iClass cards come in two varieties – Standard and High Security (the
latter being also marketed as Elite).

All Standard Security cards and readers carry the same symmetric master key which is
used in combination with some card- and facility-specific values to produce a diversified
key. Unfortunately, the proprietary key diversification algorithm turned out to be both weak
and poorly implemented, allowing for the master key to be extracted from either the cards
or readers in several different ways [134, 96, 97].

After the first key recovery attacks surfaced, HID responded by modifying future models
of card readers so that the firmware stored inside them could not be so easily dumped or
read. However, the master key itself was not changed, making it still easy to clone the
cards once the key has been recovered [122].

In High Security mode, it is possible to install a different master key for different facilities.
However, key recovery is still possible and may actually be implemented more efficiently
than for the Standard Security cards [97].

9.4 HID INDALA

INDALA is another popular product line by HID Global. It works on the 125kHz frequency
range, and, as noted above, such cards typically do not provide any cryptographic func-
tionality. HID INDALA is a little bit different, since it is marketed as supporting proprietary
FlexSecur® encryption technology [3].

After relatively simple reverse engineering, an earlier version of this technology (known as
ASP) turned out to be a simple bit rearrangement [130]. HID rolled out an updated version
(known as ASP+) and claims it to be "more secure than scrambling technology used on
legacy Indala ASP" [3].

However, details of the cryptographic algorithm used are still not provided. In fact, from the
card copying attack point of view, these are even irrelevant, since the card itself still does
not perform any computations. A constant cryptogram is written onto the card, essentially
becoming a new password that can be copied and replayed easily.

It is true that this sort of a solution can be utilised to prevent accidental cross-usage of
access card between different facilities (assuming these facilities use different encryption
keys). However, we get a problem when, referring to this extra feature, the product is
marketed as being generally secure.

The access card solution providers should be encouraged to make more precise security
claims, including statements about which attacks their system does not counter. Also, we
do not approve using proprietary encryption methods, since too many of them have been
broken in the past using only a moderate amount of cryptanalytic effort.
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9.5 Estonian public transportation cards

In several Estonian municipalities, public transportation cards are using NFC tags as an
underlying technology. For example, the transportation cards in Tallinn are built on MIFARE
Classic, whereas in Tartu MIFARE Ultralight C cards are used. However, even though both
of the cards support cryptographic authentication (see Section 9.2), this functionality is not
used.

In both cases, the protocol running between the card and the reader is essentially the
same, consisting of transmitting the card’s unique ID and a signature (RSA1024 in Tallinn
and ECDSA on curve P-192 in Tartu). However, since the cards are not capable of per-
forming asymmetric cryptography operations, the signature is pre-generated during the
card initiation process, and stays constant throughout different protocol runs.

While this measure prevents unauthorised parties from issuing new cards, it does not stop
the card cloning attack. The only measure against the latter is the difficulty of creating an
NFC tag with a cloned ID value.

One has to take into account that the unique ID of an NFC tag/card was never designed
to be a security feature, but rather an anti-collision mechanism in the case a reader has to
distinguish between various tags that are presented to it at the same time. Even though
off-the-shelf cheap tags do not support changing the ID, a bit more expensive ones do.
Such NFC tags and the required writing equipment can easily be bought online.

When NFC-based public transportation cards were introduced in Estonia, their first ap-
plication scenario was supporting free transportation for Tallinn citizens. Cloning a card
that gives free ride anyway was probably not perceived as a great threat. Also, additional
security measure of verifying the citizen’s physical ID was planned.

However, other application scenarios emerged soon. Cloning a card that carries a monthly
ticket causes direct financial loss to the transportation service provider and must hence be
urgently addressed.

Even though the ID fields of transportation cards are not writeable, other fields may be.
This is for example the case with Tartu bus cards that allow e.g. the signature field to be
overwritten by a standard app working on a regular NFC-capable smartphone. As a result,
the card will become invalid, giving us a potential Denial of Service attack. We want to
emphasize that this attack can be implemented without any special equipment whatsoever.

We conclude that Estonian public transportation cards are vulnerable to various kinds of
Denial of Service and cloning attacks. To avoid them, the cards should be non-writeable
and use proper protocols. Basing security on the assumption of hardness of UID cloning is
not a valid approach.

One possible obstacle preventing the use of a proper cryptographic authentication protocol
is usability. The protocol presented in Section 9.2 requires four messages to be sent in
two rounds between the tag and the reader. Both of the parties also have to perform
cryptographic operations, which is especially time-sensitive for the tag.

As a result, the user experience with a card supporting a more secure protocol must
change. The user can not simply wave the card in front of the reader, but must hold it
there for a longer period of time. This may be unacceptable for the public transportation
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setting. We conclude that using NFC technology for public transportation cards may be a
bad idea from the security viewpoint in general.

9.6 Deployment issues

Even if NFC cards/tags with cryptographic capabilities are used, this does not automatically
mean secure deployment. Besides pseudo-cryptographic measures mentioned above, key
management is another major issue.

As the performance of NFC tags is not yet sufficient to support asymmetric cryptography,
mutual authentication based on symmetric keys (in the fashion of DESFire cards) is cur-
rently the best that one can achieve. However, one has to be aware of the associated
weaknesses. In order to run the protocol, the reader must have access to the same sym-
metric key as the tag does, and this is already an assumption weakening the whole strength
of authentication.

Even more, in practical deployments it is often the case that the same key is shared not
only between the tag and the reader, but also among several tags, making it possible
to defeat the purpose of authentication. Interview with a company installing NFC-based
access control systems revealed that it is common practice to use same keys also in several
installations, making e.g. door keys of one company work at the door of another company,
too. This kind of practice should be strongly discouraged.

There are many reasons why access card systems using insecure protocols are deployed
in practice. First, insecure systems are cheaper both to set up and maintain, as no com-
plicated key management is required. Such a deployment also requires a lower technical
skill level, thus being available to a wider range of installation service providers.

Second, the current practice of how access control systems are being acquired and inte-
grated into infrastructure (e.g. office buildings), is principally flawed. Typically, an access
control mechanism is required as a part of public tender. It would, in principle, be possi-
ble to include security requirements of such mechanisms as a part of these requirements.
However, this is often omitted, since security is hard to measure, the person composing
the tender does not have a sufficient level of competence, etc. Even if the access solution
provider supplies some sort of a certificate that the solutions is secure, no-one guarantees
that the solutions and cards deployed were deployed in the secure mode. Also, explicit
security statements are often missing from the accompanying documentation.

Still, the only way to improve upon the current situation is to start from setting explicit
security requirements to the newly tendered installations. In high security environments,
post-installation auditing to verify the security claims made by the solution provider may
also be required.

9.7 Transparency issues

A serious problem preventing auditing the access card systems is the proprietary nature
of the cryptographic algorithms and protocols used in NFC applications. For example the
description of the protocol used in MIFARE EV1 and Ultralight C cards (see Section 9.2)
has been obtained from third-party documents and/or reverse engineering, but not from
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the supplier. The same holds true for HID iClass and INDALA cards, and actually all kinds
of cards we studied for this report.

Even if some information about cryptographic features is available, it is typically too sparse
or even controversial to draw any conclusions. For example, installation manual of ICT
PRX-TSEC multi-technology card reader [29] states:

Once you have selected the desired key slot you will be prompted to enter the
6 byte hexadecimal encryption key.

6 bytes (i.e. 48 bits) is far too little to provide a reasonable level of security in any application
scenario. However, the manual does not even specify, in which scenario this sort of very
weak encryption is used, what protocols are built upon it and what are the precise security
goals that the system is designed to meet.

This sort of vagueness is a direct violation of what is known as the (second) Kerckhoffs’s
principle [115] – the system’s security should rely only on the secrecy of the key, and not
secrecy of the system architecture. The history of cryptography is full of attempts to violate
this principle, and many of them have failed miserably.

This report strongly discourages such an approach. Instead, we suggest the following
principles to be applied for future public tenders.

1. The tenders should explicitly specify desired security goals (e.g. hardness of cloning
the cards/keys).

2. The providers should disclose all the measures they take to meet these goals (in-
cluding the descriptions of cryptographic algorithms and protocols used).

3. Independent post-installation auditing may be required to establish that the installed
solution actually corresponds to the disclosed specifications.

Unfortunately, many legacy systems have been built without taking these principles into
account. Consequently, it is very hard to state or prove any security claims about them.

As the first step of improvement, security audits need to be conducted on critical legacy
systems deploying RFID/NFC technology. For that, the suppliers must be mandated to
reveal technical details of the installations (using legal actions, if necessary).

As the second step, solution providers must be required to improve the deployments (e.g.
by rolling out firmware updates supporting more secure algorithms and protocols). If this is
not possible, transitions to completely new systems must be initiated as soon as possible.

The canonical place to state security requirements for Estonian information systems is the
baseline protection manual ISKE. Currently, the relevant measure M1.80w "Access control
system and authorisation management" does not specify explicit security requirements.13

It does refer to the standard DIN EN 50133-1 that was accepted in Estonia as EVS-EN
50133-1. However, the standard is now obsolete, and has been replaced by EVS-EN
60839-11-1:2013.

This standard defines four grades of risk for access control systems, ranging from low to
high. Token-based access control systems do not have any special requirements for grades

13https://iske.ria.ee/7_06/ISKE_kataloogid/7_Kataloog_M/M1/M_1.80
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1 and 2. However, on grade 3, encrypted data communication is mandated, and on grade 4
the token must support mutual authentication. Also, cryptographic protection is compulsory
for card data manipulation operations.

We criticise such a state of affairs. Reference to an obsolete standard should be updated
and the relevant requirements to the access control systems should be included in ISKE
directly, connecting them with ISKE security levels.
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10 Mobile-ID protocol analysis

The TLS handshake protocol has a number of variations, providing different kinds of guar-
antees to the client and the server about each other’s identity. In the most common sce-
nario, the server will be authenticated to the client, while the identity of the client will not
become known to the server through cryptographic means (e.g. by using a client certifi-
cate). Subsequently, the client may present credentials (e.g. password) to the server using
the secure channel that the TLS handshake protocol has established, thereby allowing the
server to assume that the provided credentials have been provided indeed by a specific
client and to authorize that user for that session. A variety of attacks apply to this scenario.

This is not the case for Estonian ID-card, where the client is ultimately identified to the
server by the private key in the user’s ID-card. During the years after ID-card launch and
adaption, it became clear that an alternative identification and signing method is needed
for an unlikely but theoretically possible scenario, where the ID-card infrastructure fails for
some unforeseeable reason.

Since 2007, Estonian mobile operators have issued their customers mobile phone SIM
cards that contain an USIM application which enables them to sign hashes presented sent
to them via DigiDocService and OTA platform by using encrypted SMS messages [22].
The signing is done with either RSA or ECC private keys stored inside the SIM card trust
zone; the private keys themselves never leave the SIM card. The Mobile-ID protocol allows
a user having a personified Mobile-ID enabled SIM card, to identify oneself to a service
provider, say a bank or a government institution, but also to sign documents digitally.

The authentication procedure is initiated by a service provider’s server with a request to
DigiDocService, which is ultimately the backend and backbone of the Mobile-ID service.
DigiDocService forwards the server- and DigiDocService-generated challenge to the USIM
application in the to-be-authenticated user’s SIM card by a SMS message (through mo-
bile service provider’s network). This SIM card signs the challenge with the private key
inside it and returns the hash by SMS message and through DigiDocService to the service
provider’s server.

The digital signing procedure is initiated by the signing application available from https:
//installer.id.ee or an application running in service provider’s server. This application
sends the hash of the to-be-signed document to DigiDocService, which then forwards that
hash to the SIM card, where the USIM application prompts the user with the control code,
computed from the received hash. If the user approves the control code (that is also shown
by the signing application or service provider) and enters correct PIN, the USIM application
signs the hash with according private key and returns the signature by SMS message and
through DigiDocService to the service provider’s server or the signing application running
in user’s computer.
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Over the years, this protocol has been thoroughly analysed; this report is based on the
results. While the Mobile-ID protocol is used also in other countries besides Estonia [10,
11], the current report focuses strictly on Estonian implementation. The conclusions for
other deployments may be different than the ones given here.

10.1 Authentication with Mobile-ID

Ideally, the device containing the SIM card (usually user’s phone) is different from the device
(running a web browser) that’s used to access the service (bank’s website), which the user
needs to be authenticated for. Such a design would ideally lower the amount of trust placed
onto each single device that is part of the trusted computing base in that case. To securely
authenticate the user, there must be means to transport the server-generated challenge to
the phone, and means for the phone to verify that the user wanted to authenticate himself
to that particular service.

The communication between the server and the phone is mediated by the DigiDocService
web service and OTA platform [22], managed by AS Sertifitseerimiskeskus; the messages
between OTA and the SIM card are encrypted using 3DES [24]. In the Mobile-ID proto-
col, the phone generates a four-digit control code from the received challenge, which was
jointly generated by the server and DigiDocService. The server also sends the same con-
trol code to the client device. The user must then verifty that the four-digit control codes
match. If these do match, the user allows the phone to sign the challenge, by unlocking that
functionality of the USIM application with the PIN associated with the needed private key.
The signature is sent back to server via DigiDocService. The entire protocol is described
in [22].

In 2009, Laud and Roos analysed the Mobile-ID protocol for its security against network-
based attacks [124]. No large changes (e.g. changing the contents of messages) have
been made to the underlying protocol as of 2016 [24], hence the inferred results should still
be relevant. The following issues were found in the protocol [124].

• When the USIM application signs the challenge, then indeed only the challenge is
signed. The prudent engineering practice for cryptographic protocols [31] suggests
to include the name of the verifier under the signed message, if this signature is
intended for a particular verifying party. This reduces the chance of successful man-
in-the-middle attacks.

• One part of the challenge is generated by DigiDocService. As the four-digit control
code has only 10,000 possible values, DigiDocService may cause collisions in them.

• The control code shown in the client device is (in some use cases) computed solely
by DigiDocService, and not with the server.

Each of these weaknesses allow DigiDocService to perform man-in-the-middle attacks.
I.e., the maintainers of DigiDocService are able to masquerade as other users to servers.
Put otherwise, the DigiDocService is part of the trusted computing base for authentication
with Mobile-ID. Hence it is also important for service providers to carefully verify the identity
of DigiDocService when establishing TLS sessions and exchanging messages with Digi-
DocService. If all the weaknesses listed above were corrected, then the DigiDocService
would stay out of the trusted computed base for user authentication.
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These weaknesses do not extend to the attacks performed by a malicious mobile operator
or through a man-in-the-middle attack: as the messages between DigiDocService and the
SIM card are encrypted [24], the attacker has no way to change them undetectably.

We have no better suggestions for the removal of weaknesses than the introduction of
necessary changes to the protocol. However, this would break interoperability with the
already deployed SIM cards.

Our analysis has also shown that the Mobile-ID protocol is as vulnerable to man-in-the-
middle (between the client device and service provider’s server) attacks as password-based
authentication. This may become significant in scenarios where the user does not carefully
determine the identity of the service provider’s server. The authentication using the ID card
does not have this type of vulnerabilities.

10.2 Digitally signing documents with Mobile-ID

Similarly to Estonian ID-cards, the Mobile-ID SIM cards contain separate private keys for
authentication and signing. Signing protocol is simpler than the authentication protocol, as
there is no server depending on the outcome. In signing protocol, the signing application
sends the hash(es) of the to-be-signed document to DigiDocService, which calculates the
hash for signing (according to the XAdES specification [6]) and sends it via the OTA platform
to the SIM card, where the USIM application shows the control code, computed from that
hash. If the user approves the control code (that is also shown by the signing application)
and enters the correct PIN, the USIM application signs the hash and sends the signature
back to the DigiDocService, which forwards it to the signing application.

Obviously, DigiDocService can change the hash that is going to be signed. It is easy to
change it without changing the control code, because these have only 10,000 possible
values, meaning that collisions are easy to find. Such changes cannot be detected by the
signer before the hash has been signed by the USIM application. Hence DigiDocService
belongs to the trusted computing base when signing with Mobile-ID. To detect such attacks,
the signer should verify the constructed signature after the signing.

In the current Estonian context, the deployment details significantly reduce the impact of
the weaknesses of both the authentication and signing protocols — the DigiDocService
is operated by the same entity that issues the certificates for authentication and signing,
identifying the users of Mobile-ID. This entity is a part of the trusted computing base any-
way, and the additional attacks it could perform through DigiDocService give it no additional
power.

10.3 Other security considerations

While [124] considered only the network security of the Mobile-ID protocol, there are other
important technical and organisational details of the supporting infrastructure to consider.
A list of these details has been discussed in [167], mostly in the form of issues that should
be more thoroughly considered. The next few paragraphs give an overview of those issues.

There are important technical aspects surrounding the SIM card and its keys, and the
USIM application on it. The private keys on the card have to be generated securely. A
good source of randomness must be employed for this generation, and the generation
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process itself is rather resource-intensive (at least for certain cryptographic primitives). If
such randomness source is unavailable inside the card, or the card is computationally too
weak to generate the keys itself, then these keys have to be generated outside of the card.
The generated keys have to be loaded onto the card and the path from the generation
place to the card must be protected through organisational means. Similar issues pertain
to the generation of PINs protecting the use of private keys, and their transport to the user.

The Mobile-ID application on the SIM card is responsible for receiving the challenge (or
the hash of a document to be signed), checking the PIN and actually computing the signa-
ture. This USIM application is a security-critical component of the whole Mobile-ID system.
Hence it should be thoroughly tested, its code quality should be evaluated, not only for
functionality, but also for security and the absence of possible side-channel attacks on
that specific hardware/software combination. To start with, the application should be well-
specified and its code should be checked against the specification.

The organisational security methods around the Mobile-ID platform have to be carefully
selected. The questions pertaining to the procurement of chips, the operating system and
the application, as well as the personalisation and storage of the chips may be similar
to the ID-card infrastructure or to the normal operations of a mobile telecommunications
provider. Hence the same organizational methods may be applicable for securing all these
processes. But the issue of managing secure channels between the DigiDocService and
the mobile operators is unique to Mobile-ID.

The questions listed in previous paragraphs on the basis of [167] have been considered
during the intervening years [24] and deemed to have been answered in satisfactory man-
ner [16]. The generation of the keys for the SIM card is regulated in [5, Sec. 6.1.2], requiring
the SIM card producer to give assurance to the mobile operator that the keys have been
generated according to best practice and are unique. The protection of PINs is similarly
regulated. The attacks against a specific person are also made harder by the SIM card
being bound to a person only after it has been issued [23]. The current USIM application
on the SIM card has been specified and is currently being tested whether it matches the
specification and satisfies the security requirements.

Certain security claims of Mobile-ID, particularly about the lack of a single point of fail-
ure, are based on the independence of the client device and the phone. Such scenario
may have been the case in 2008 when Mobile-ID was introduced and used with “feature
phones”, but nowadays a smartphone or a tablet often fulfils both roles, enabling the ser-
vice providers to lure users to use apps [25, 26, 27], that allow the user to access a service,
say a user’s bank account on the same device that the user uses for authentication and
digital signing. Such convergence was already warned against in [167].

We conclude that while the network security aspects of the Mobile-ID protocol have not
significantly changed from the time it was analysed, the applied technical and organisa-
tional security measures have significantly evolved and become more concrete. Also, the
usage patterns of Mobile-ID have changed and may still be changing [170]. In particular,
the boundaries between devices may be dissolving, especially if the same cloud-based
services are used from both the computer and the phone. We suggest that the appropriate
Estonian government institutions analyse Mobile-ID security measures to check how they
hold today, as the typical Mobile-ID use cases have changed since the last thorough analy-
sis of Mobile-ID protocol. While financial or other private institutions may accept their risks
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or lower these with insurance, government institutions do not always have that luxury.
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11 Conclusions and recommendations

After publication of the previous, 2015 version of the report, no major cryptanalytic break-
throughs have occurred. This means that the recommendations given in [18] are still valid.
We will summarise them here as well.

• As the standard choice for symmetric encryption, AES block cipher is recommended.
In mid-term perspective (up to 10 years), all the standard key lengths (128, 192 and
256 bits) may be used. For long-term security (30-50 years), AES-256 is recom-
mended. Camellia cipher can also be considered secure. However, RC4, DES and
3DES are obsolete and their usage should be terminated.

• In case of RSA and discrete-logarithm-based systems (like Diffie-Hellman key ex-
change, ElGamal and DSA), usage of 1024-bit keys should be stopped urgently. Ex-
isting deployments of 2048-bit keys may be continued for 5 years. New installations
and installations requiring mid-term security should use at least 3072-bit keys.

• Usage of hash functions MD5 and SHA-1 should be discontinued as soon as pos-
sible. As replacements, SHA-2 and SHA-3 families of hash functions are recom-
mended. New installations should avoid implementing SHA-224.

• After the NSA announcement about Suite B recommendation updates, the situation
with elliptic key cryptosystems is unclear. We estimate that implementation of a prac-
tical quantum computer capable of breaking current asymmetric encryption systems
is still more than 5 years away. Hence, using standard elliptic curves (like P-256 and
P-384) is fine for at least this time period.

These recommendations should be taken into account when deciding upon the TLS cipher
suite. Additionally, one has to select the key exchange algorithm and block cipher mode of
operation.

To provide forward security, ephemeral Diffie-Hellman key exchange should be used; the
corresponding cipher suites have either DHE or EDH in their names.

As classical block cipher modes of operation do not provide integrity assurance, message
authentication codes must be deployed together with them. TLS version 1.2 provides an
additional GCM mode that also adds an integrity mechanism to encryption. There are
several implementation caveats of the GCM mode. For example, Böck et al. have recently
shown how to attack it in case of nonce reuse [57]. However, their findings also show that
recent versions of OpenSSL have been properly patched against this vulnerability.

In the upcoming TLS version 1.3, both non-ephemeral key exchange and non-
authenticated block cipher modes are planned to be disabled [154]. We recommend imple-
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menting these updates already today, by selecting for example one of the following cipher
suites:

• TLS_DHE_RSA_WITH_AES_128_GCM_SHA256,

• TLS_DHE_RSA_WITH_AES_256_GCM_SHA384.

During deployment, one may discover that not all the devices and applications support
these cipher suites. In this case the above recommendations should be taken into account
in the largest possible extent that still provides the required level of interoperability. In any
case, usage of weak cryptographic algorithms (like RC4, DES and MD5) should be prohib-
ited. An interested reader can find many practical tips for secure system configuration of
various applications in the Applied Crypto Hardening report [65].

An important aspect to take into account when building security-critical systems is modu-
larity of the cryptographic primitives used. This is especially important in the light of the
upcoming transition to post-quantum algorithms. Search for the next generation of cryp-
tographic primitives has only started and no-one can really know how long they will last.
This means that the only way to ensure continuous security of the systems is to make the
primitives easy to change.

However, one has to keep in mind that no currently available practical cryptographic tech-
nique guarantees security for a very long time span. If privacy is required for, say 70 years
(which it is for some document types), cryptographic measures alone are not sufficient, and
additional physical and organisational measures need to be applied.

Another general recommendation is to use the most up-to date versions of cryptographic
libraries like OpenSSL, BoringSSL or BouncyCastle to prevent implementation-level vul-
nerabilities from being misused.

When planning for critical systems and infrastructure, security requirements must already
be addressed in the public tender phase. Explicit security requirements should be stated
in the call and the providers should open the technical specifications of their proposals
to the extent that will allow for independent post-installation auditing. The corresponding
requirements should also be included into the Estonian baseline security framework ISKE.

During the reporting period (2015-16), the most significant advancements have been made
in cryptanalysis of hash functions. Finding a collision of SHA-1 has become almost acces-
sible, hence the recommendation to phase out its usage as soon as possible.

At the same time a significant amount of resources have been invested into creating a
sufficiently large quantum computer that would break almost all of the currently deployed
asymmetric algorithms. However, there are still major physical obstacles to overcome (like
a relatively short life-time of qubits). Unless NSA knows something the rest of the world
does not, a sufficiently powerful quantum computer still seems at least 10 years away.
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A Shor’s algorithm

Shor’s quantum algorithm is capable of finding a period r of any integer function f :Z! Z
2

m

on a quantum computer. By the period, we mean the smallest positive integer r so that
f (x + r) = f (x) for every x 2 Z. If r < 2

n and m = O(n), the time for finding r is O(n2

).

A.1 Basic Principles of Quantum Mechanics

State space The state of any closed physical system (from a single particle to the uni-
verse as a whole) is completely described by a point in a vector space V, where the co-
ordinates are complex numbers and where an inner product h·, ·i is defined (hence, V is
a Hilbert space). States of the system are the vectors  for which || || = ph , i = 1,
i.e. the unit vectors. Everything that can be known about the system is “encoded" into  .
The state space may sometimes have infinite number od dimensions. For the purpose of
quantum computation, finite-dimensional state spaces are sufficient.

Dynamics If  (t) is a state at time t and  (t0) is the state at some later time t0, then the
evolution of the state is described by a unitary linear operator U:

 (t0) = Ut,t0 (t) .

The unitarity of U means that UU† = 1, where U† is the Hermitian conjugate of U, i.e.
the unique operator that satisfies hU , 0i = h ,U† 0i for any  , 0 2 V. The exact form
of such a transformation depends on the particular system. Often, Ut,t0 is described as
a solution (integration from t to t0) of a differential equation i~ @@t = H , which is called
the Schrödinger’s equation of the system. Here H is the so-called Hamiltonian operator
that describes the energy of the particular system, ~ is the Planck’s constant and i is the
imaginary unit.

Measurement A measurement is described by a set of mutually orthogonal subspaces
Vi that (together) span V. The orthogonality of Vi and Vj means that h i, ji = 0 for every
 i 2 Vi and  j 2 Vj. There is one-to-one correspondence between possible results ri of
the measurement and the subspaces Vi. Let Pi: V ! Vi denote the projection operators.
After the measurement, with probability pi = ||Pj ||2, the result of the measurement is ri

and the state  changes to
1

||Pj ||Pj .
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A.2 Quantum Bit and Quantum Register

A quantum bit (qubit) is the simplest possible quantum system that is represented by a
two-dimensional complex vector space V with base vectors |0i and |1i, i.e. in general, a
qubit can be in the superposition state

 = ↵|0i + �|1i ,

where ↵ and � are complex numbers with |↵|2 + |�|2 = 1. Measuring  gives |0i with
probability |↵|2 and |1i with probability |�|2. A two-bit quantum system (register) has a four-
dimensional state space V ⌦ V, the tensor-square of V, with the base vectors |00i, |01i,
|10i, and |11i. The two-bit quantum register may, in general, be in any state of the form:

 = ↵|00i + �|01i + �|10i + �|11i ,

where ↵, �, �, � 2 C and |↵|2 + |�|2 + |�|2 + |�|2 = 1. In general, the state space of an n-qbit
quantum register is a 2

n dimensional complex vector space V ⌦ V ⌦ . . . ⌦ V|              {z              }
n

, i.e. the n-th

tensor power of V with the basis consisting of 2

n base vectors |0..00i, |0..01i . . . |1..11i. The
exponentially growing complexity of the state of an n-qubit quantum register illustrates the
difficulty of simulating quantum processes with classical computers.

A.3 Quantum Gates

Like any classical computation can be represented as an evaluation of a Boolean circuit,
also any quantum computation can be represented as a sequence of evaluating quantum
gates. An m-bit quantum gate is a device that transforms input qubits x

0

, . . . , xm�1

to output
qubits y

0

, . . . , ym�1

. Every quantum gate is a linear and unitary transformation of the state
space and can be represented as a matrix. For example, a single qubit quantum gate is a

linear unitary transformation U (represented as a matrix
"

u
00

u
01

u
10

u
11

#
) that converts a qubit

↵|0i + �|1i to a new state ↵0|0i + �0|1i of the form:
"
↵0

�0

#
=

"
u

00

u
01

u
10

u
11

#
·
"
↵
�

#
=

"
u

00

↵ + u
01

�
u

10

↵ + u
11

�

#
.

In classical circuits, there are only two one-bit gates: the identity gate (just a wire) and the
NOT gate. In quantum circuits, there are many more one-qubit gates. In the following, we
will go through some of the most important and relevant to this chapter quantum gates.
However, there exist many more.

Single Qubit Gates

NOT Gate Quantum NOT gate just swaps the complex coefficients ↵ and � of the qubit
↵|0i+�|1i and transforms it to the qubit �|0i+↵|1i. The NOT-gate is represented as a matrix"

0 1

1 0

#
. Analogous to the classical NOT gate, a quantum NOT applied twice is equivalent

to the identity gate, i.e. "
0 1

1 0

#
·
"

0 1

1 0

#
=

"
1 0

0 1

#
= I .
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Hadamard Gate Hadamard gate converts |0i to the sum |0i+|1ip
2

and |1i to the sum |0i�|1ip
2

.

It is represented by the matrix H = 1p
2

"
1 1

1 �1

#
. It is easy to verify that, analogous to the

NOT gate, H applied twice is the identity gate, i.e. HH = I.

Phase Shift Gate The phase shift gate transforms a qubit ↵|0i + �|1i to a qubit ↵|0i +
ei��|1i, i.e. geometrically, it rotates the complex coefficient � by an angle � on the complex

plane. The phase transform gate is represented by the matrix R� =
"

1 0

0 ei�

#
.

Two Qubit Gates

Controlled NOT (XOR) Gate is a two-bit gate that is an analogue of the classical XOR
gate. It inverts the second qubit if the first qubit appears to be 1, i.e. |00i 7! |00i, |01i 7!
|01i, |10i 7! |11i, and |11i 7! |10i.

Swap Gate Swap gate inverses the order of the bits. For example, for two-qubit swap
gate, |01i 7! |10i and |10i 7! |01i, but |00i 7! |00i and |11i 7! |11i.

Controlled Phase Shift Gate Controlled phase shift gate is a two-qubit quantum gate. If
the first qubit appears to be |1i, the ordinary phase shift gate with factor ei� is applied to the
second qubit, i.e. |00i 7! |00i, |01i 7! |01i, |10i 7! |10i, and |11i 7! ei�|11i.
The matrices of the described more complex gates are shown in Table 7.

Quantum Circuits

For any classical circuit (say with AND and NOT gates) that implements a function
f : {0, 1}m ! {0, 1}m can be implemented as a quantum circuit U that transforms a 2m-bit
quantum input register so that |xi|yi 7! |xi|y � f (x)i, which means that |xi|0mi 7! |xi| f (x)i
It can be shown that for the modular exponential function f (x) = ax

mod N, where N ⇡ 2

n,
there exists a quantum circuit F with O(n2

) quantum gates, that computes |x, yi 7! |x, y �
f (x)i.

A.4 Quantum Fourier Transform

The classical Fourier transforms a vector (x
0

, . . . , xN�1

) 2 CN to the vector (y
0

, . . . , yN�1

) 2
CN according to the formula:

yk =
1p
N

N�1X

j=0

x je2⇡i j k
N . (2)

Similarly, the quantum Fourier transform maps a quantum state
PN�1

i=0

xi|ii to a quantum
state

PN�1

i=0

yi|ii according to formula (2). For example, for a single bit, i.e. if N = 2, the
quantum Fourier transform maps x

0

|0i + x
1

|1i to x
0

+x
1p

2

|0i + x
0

�x
1p

2

|1i, which in matrix form is

"
y

0

y
1

#
=

1p
2

"
1 1

1 �1

#
·
"

x
0

x
1

#
= H ·

"
x

0

x
1

#
.
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Table 7. Notation and matrix representation of gates in quantum circuit diagrams.

Using the notation ! = e 2⇡i
N , the matrix representation (for N = 4) of the quantum Fourier

transform is the following:

1

2

2
66666666666664

1 1 1 1

1 ! !2 !3

1 !2 !4 !6

1 !3 !6 !9

3
77777777777775
=

1

2

2
66666666666664

1 1 1 1

1 i �1 �i

1 �1 1 �1

1 �i �1 i

3
77777777777775
.

For N = 4, the quantum Fourier transform can be computed using the following quantum
circuit:

Tis operations corresponds to the product of unitary matrices:
2
666666666664

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

3
777777777775

|                {z                }
swap

·
2
666666666664

1 1 0 0

1 �1 0 0

0 0 1 1

0 0 1 �1

3
777777777775

|                     {z                     }
second H

·
2
666666666664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 i

3
777777777775

|                {z                }
phase-shift

·
2
666666666664

1 0 1 0

0 1 0 1

1 0 �1 0

0 1 0 �1

3
777777777775

|                     {z                     }
first H

=

2
66666664

1 1 1 1

1 i �1 �i

1 �1 1 �1

1 �i �1 i

3
77777775 .

A general recurrent scheme for quantum circuit implementation of QFTn in case N = 2

n is
presented in Figure 3, where QFTn is built from QFTn�1

(where N = 2

n�1). Note that the
schemes are represented without the final swap of bits.
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Figure 3. Implementation of QFTn by using Hadamard- and controlled phase shift gates.

One important application of the quantum Fourier transform is that if QFTm is applied to the
state |00..0i, then we obtain the uniform superposition

 =
1

2

m/2 (|0..00i + |0..01i + . . . + |1..10i + |1..11i)
of all 2

m possible base states. If f : {0, 1}m ! {0, 1}m is any one-to-one function, then we
may implement f as a quantum circuit and compute the superposition

 0 =
1

2

m/2 ( f (|0..00i) + f (|0..01i) + . . . + f (|1..10i) + f (|1..11i))
of all possible values of f just by executing the quantum circuit once. This is called quantum
parallelism. If f is not invertible, we are able to implement a 2m-qubit quantum circuit F
that computes an equally distributed superposition of |xi| f (x)i, so that F: |xi|0i 7! |xi| f (x)i.

A.5 Shor’s Period-Finding Algorithm

Say F: |x, 0i 7! |x, f (x)i is a quantum circuit for an integer function f :Z ! Z
2

m with the
period r < 2

n. We use two registers of size 2n and m qubits, that are initially set to |0, 0i.
Let N = 2

2n. Then we:

1. Apply QFT

2n to the first register and obtain the superposition 1p
N

PN�1

i=0

|i, 0i.
2. Apply F to obtain the superposition 1p

N

PN�1

i=0

|i, f (i)i.
3. Measure the second part of the register to obtain a result k = f (s), where we may

choose s so that s < r. Then the register will be in the superposition of all dN/re
possible values s, s + r, s + 2r, . . . that will result in k as the output of f . The reduced
superposition will be:

 0 =
1pp

p�1X

j=0

|s + jr, ki ,

where p = dN/re.
4. We apply QFT

2n again to obtain:

QFT

2n 
0 =

1p
pN

N�1X

i=0

0
BBBBBB@

p�1X

j=0

e2⇡i i(s+ jr)

N

1
CCCCCCA |i, ki =

1p
pN

N�1X

i=0

e2⇡i is
N

0
BBBBBB@

p�1X

j=0

e2⇡i i jr
N

1
CCCCCCA |i, ki .
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The absolute values of the coefficients have sharp peaks in case i is a multiple of N
r .

This is because:

lim

p!1
1

p

p�1X

j=0

e2⇡i↵ j =

(
1 if ↵ 2 Z
0 if ↵ < Z .

5. Finally, measure the first register, and get a value c close to �N
r with � 2 Zr, i.e.

c
N = c · 2�2n ⇡ �r . This is equivalent to finding a rational approximation a

b with a, b < 2

n

for the fixed point binary fractional number c ·2�2n. In such approximation, � and r are
uniquely determined only if the rational fraction �

r is irreducible, i.e. if gcd(�, r) = 1.
Sufficient condition for this is that � happens to be a prime number. By the prime-
number theorem, the probability of a random � 2 Zp being prime is about 1

ln r =
1

O(n)

,
which means we need a linear (in n) number of trials to find r.
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B Support for elliptic curves in various
libraries

Table 8 summarises the elliptic curve support in various libraries.

Table 8. Support for elliptic curves in various libraries and frameworks

Curve O
pe

nS
S

L
1.

0.
2

G
nu

TL
S

3.
4.

10

N
S

S
3.

23

Ja
va

S
E

7
/8

(S
un

E
C

)

B
ou

nc
y

C
as

tle
1.

54

.N
E

T
4.

5
/4

.6

B
or

in
gS

S
L

W
ol

fS
S

L
3.

8.
0

brainpoolP160r1 + - - - + - - -
brainpoolP160t1 + - - - + - - -
brainpoolP192r1 + - - - + - - -
brainpoolP192t1 + - - - + - - -
brainpoolP224r1 + - - - + - - -
brainpoolP224t1 + - - - + - - -
brainpoolP256r1 + - - - + - - -
brainpoolP256t1 + - - - + - - -
brainpoolP320r1 + - - - + - - -
brainpoolP320t1 + - - - + - - -
brainpoolP384r1 + - - - + - - -
brainpoolP384t1 + - - - + - - -
brainpoolP512r1 + - - - + - - -
brainpoolP512t1 + - - - + - - -
c2pnb163v1 + - + - + - - -
c2pnb163v2 + - + - + - - -
c2pnb163v3 + - + - + - - -
c2pnb176v1 + - + - + - - -
c2pnb208w1 + - + - + - - -
c2pnb272w1 + - + - + - - -
c2pnb304w1 + - + - + - - -
c2pnb368w1 + - + - + - - -
c2tnb191v1 + - + + + - - -
c2tnb191v2 + - + + + - - -
c2tnb191v3 + - + + + - - -
c2tnb239v1 + - + + + - - -
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Table 8. Support for elliptic curves in various libraries and frameworks

Curve O
pe

nS
S

L
1.

0.
2

G
nu

TL
S

3.
4.

10

N
S

S
3.

23

Ja
va

S
E

7
/8

(S
un

E
C

)

B
ou

nc
y

C
as

tle
1.

54

.N
E

T
4.

5
/4

.6

B
or

in
gS

S
L

W
ol

fS
S

L
3.

8.
0

c2tnb239v2 + - + + + - - -
c2tnb239v3 + - + + + - - -
c2tnb359v1 + - + + + - - -
c2tnb431r1 + - + + + - - -
prime192v1 (P-192) + + + + + - - +
prime192v2 + - + + + - - -
prime192v3 + - + + + - - -
prime239v1 + - + + + - - -
prime239v2 + - + + + - - -
prime239v3 + - + + + - - -
prime256v1 (P-256) + + +14 + + + + +
secp112r1 + - + + + - - +
secp112r2 + - + + + - - -
secp128r1 + - + + + - - +
secp128r2 + - + + + - - -
secp160k1 + - + + + - - -
secp160r1 + - + + + - - +
secp160r2 + - + + + - - -
secp192k1 + - + + + - - -
secp224k1 + - + + + - - -
secp224r1 (P-224) + + + + + - + +
secp256k1 + - + + + - - -
secp384r1 (P-384) + + +14 + + + + +
secp521r1 (P-521) + + +14 + + + + +
sect113r1 + - + + + - - -
sect113r2 + - + + + - - -
sect131r1 + - + + + - - -
sect131r2 + - + + + - - -
sect163k1 + - + + + - - -
sect163r1 + - + + + - - -
sect163r2 + - + + + - - -
sect193r1 + - + + + - - -
sect193r2 + - + + + - - -
sect233k1 + - + + + - - -
sect233r1 + - + + + - - -
sect239k1 + - + + + - - -
sect283k1 + - + + + - - -

14These curves are supported by default. Support for additional curves may be achieved by setting the
appropriate compilation flags.
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Table 8. Support for elliptic curves in various libraries and frameworks

Curve O
pe

nS
S

L
1.

0.
2

G
nu

TL
S

3.
4.

10

N
S

S
3.

23

Ja
va

S
E

7
/8

(S
un

E
C

)

B
ou

nc
y

C
as

tle
1.

54

.N
E

T
4.

5
/4

.6

B
or

in
gS

S
L

W
ol

fS
S

L
3.

8.
0

sect283r1 + - + + + - - -
sect409k1 + - + + + - - -
sect409r1 + - + + + - - -
sect571k1 + - + + + - - -
sect571r1 + - + + + - - -
wap-wsg-idm-ecid-wtls1 + - - - - - - -
wap-wsg-idm-ecid-wtls3 + - - - - - - -
wap-wsg-idm-ecid-wtls4 + - - - - - - -
wap-wsg-idm-ecid-wtls5 + - - - - - - -
wap-wsg-idm-ecid-wtls6 + - - - - - - -
wap-wsg-idm-ecid-wtls7 + - - - - - - -
wap-wsg-idm-ecid-wtls8 + - - - - - - -
wap-wsg-idm-ecid-wtls9 + - - - - - - -
wap-wsg-idm-ecid-wtls10 + - - - - - - -
wap-wsg-idm-ecid-wtls11 + - - - - - - -
wap-wsg-idm-ecid-wtls12 + - - - - - - -
Curve25519/X25519 - - - - + - + +
Ed25519 - - - - - - + +
FRP256v1 - - - - + - - -
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