4.2.2018

Essential Vim

If you are transitioning from windows, then in order of preference you will probably want to use, evim, gvim,

vim.

evim makes gvim behave like windows editors (note Ctrl+L. gets you to vim Normal mode). If one just wants
the windows key mappings from evim mode in gvim for e.g. you can use the following command: source
$VIMRUNTIME/mswin.vim. Other alternatives if you're transitioning from windows are nedit or geany.

If you're stuck with text mode access, then vim is probably the best option, so you need this info (all of which
also applies to gvim and evim). Another reason that it is good to know this is that many programs use vim key
bindings. For e.g. the readline library can be configured to use vi bindings and hence this info will be useful
to you in bash, ftp,gnuplot,python,bc,... Also less (used to read man pages on Linux) defaults to vi key

bindings.

Note most commands take an optional number (of times to run) on front
(e.g. 3. repeats the last action 3 times, or 3w moves forward 3 words etc.).

Here are my vim settings and my gvim settings.

Command
vim file +54
vim -0 file1 file2

Insert

Esc

:command
:help word

:echo &word
windows

http://www.pixelbeat.org/vim.tips.html

Action
open file and go to line 54
open filel and file2 side by side

enter insert mode

leave insert mode

runs named command
shows help on word

shows value of word

set buffer for current window

new window above
new window to left
close current window
close all windows

Notes
any : command can be run using
+ on command line

SO you can start typing.
Alternatively one can use j or g.
so you can issue commands. Note
in VIM the cursor keys &
{Home, End, Page{up,down}}
and Delete and Backspace work
as expected in any mode, so you
don't need to go back to
command mode nearly as much
as the origonal vi. Note even
Ctrl+{left,right} jumps words
like most other editors. Note also

to Esc and may be easier to type.
Also Ctrl+o in insert mode will
switch to normal mode for one
command only and automatically
switch back.

Typing Ctrl+d after word shows
all entries containing word

you can optionally specify a new
file or existing buffer number (#3
for e.g.). Note if you specify a
directory a file browser is started.
E.g. :e . will start the browser in
the current directory (which can
be changed with the :cd
command).

ditto

ditto

add trailing ! to force

1/3

4.2.2018

Ctrl+w {left,right,up,down}
Ctrl+w Ctrl+w
Ctrl+w =

undo/redo
u
Ctrl+r

navigation
g8

G

:54

80|

Ctrl+g

ga

Ctrl+e

Ctrl+y
zt

w

b

[{

%

zi
bookmarks
m {a-z}

"{a-z}

'0
selection/whitespace
v

Shift+v

Delete

http://www.pixelbeat.org/vim.tips.html

Essential Vim

move to window
toggle window focus
autosize windows

new window for all buffers

list buffers

open file under cursor
delete buffer

save file

save file as filename

undo
redo
repeat

Goto start of file
Goto end of file
Goto line 54

Goto column 80
Show file info
Show character info

scroll up

scroll down
scroll current line to top of window
Goto next word

Goto previous word

Goto previous { of current scope
Goto matching #if #else,{ },(),[1,/* */
toggle folds on/off

mark position as {a-z}
move to position {a-z}
move to previous position
open previous file

select visually
line select
cut selection

delete selection

copy selection

paste (after cursor)

append selected lines to register a

paste contents of a

reformat selection

to new terminal size for e.g.
":vert ba" tiles windows
vertically

and any associated windows
Note :up[date] only writes file if
changes made, but it's more
awkward to type

Note :w filename doesn't switch
to new file. Subsequent
edits/saves happen to existing file

including your position in the file
g8 shows UTF8 encoding

Ctrl+x needed first for insert
mode

Ctrl+x needed first for insert
mode

Note Ctrl+{right} in newer vims
(which work also in insert mode)
Note Ctrl+{left} in newer vims
must be one on line

Eg.ma

E.g.'a

handy after starting vim

use cursor keys, home, end etc.
CTRL+v = column select

without updating the clipboard or
yank buffer.
I remap x to this in my .vimrc

P is paste before cursor
use lowercase a to initialise

register

justifies text and is useful with
:set textwidth=70 (80 is default)

2/3

4.2.2018

>

<

:set list!
clipboard shortcuts
dd

yy
D

y$
search/replace
/regexp

n
*

:%s/1/2/gc

:s/1/2/g

programming
K
:make

Ctrl+]

vim -t name

Ctrl+{n,p}

Ctrl+x Ctrl+o

external filters
% !filter

Milter
:,lcommand

Essential Vim

reindent selection

indent section
unindent section

toggle visible whitespace

cut current line
copy current line
cut to end of line
copy to end of line

searches forwards for regexp

repeat previous search

searches forward for word under cursor
search for regexp 1 and

replace with 2 in file

search for regexp 1 and

replace with 2 in (visual) selection

lookup word under cursor in man pages
run make in current directory
jump to tag

Start editing where name is defined

scroll forward,back through
autocompletions for
word before cursor

scroll through
language specific completions for
text before cursor

put whole file through filter
put (visual) selection through filter

replace current line with command output

map <f9> :w<CR>:Ipython %<CR> run current file with external program

© Jul 12 2007

http://www.pixelbeat.org/vim.tips.html

very useful to fix indentation for
c code

useful with Shift+v%

remember . to repeat and u to
undo

See also listchars in my .vimrc

? reverses direction
N reverses direction
reverses direction

¢ = confirm change

2K means lookup in section 2

Ctrl+t to jump back levels. I map
these to Alt+<= in my .vimrc

uses words in current file (and
included files) by default. You
can change to a dictionary for
e.g:

set
complete=k/usr/share/dicts/words
Note only works in insert mode
"Intellisense” for vim (7 & later).
:help compl-omni for more info.
Useful for python, css, javascript,
ctags, ...

Note only works in insert mode

3/3

