Analysis of Algorithms




Algorithms

Words ,algorithm” and ,algebra“ - Abu Ja'far Mohammed ibn M(sa al-Khowarizmi —
ca 825 AD, rules for performing arithmetic operations

Algorithm is an unambiguous (exact) instruction for solving a given task.

Algorithm consists of finite number of steps, each single step takes the final amount
of time and final amount of other resources. Even so, an algorithm may not halt
(terminate)!

Algorithm .ma}/ have inputs (set of input data) and _outPuts (set of output data) -
algorithm is often considered to be a data processing function.

If an algorithm finishes its work (terminates) for all possible inputs, it is called total.
If an algorithm may not terminate for some inputs, it is called partial.

If after each step the next step is uniquely defined, the algorithm is called .
deterministic, otherwise non-deterministic. Non-deterministic algorithm may give
different outputs when executed on the same inputs.



Properties of Algorithms

Correctness (narrow) - algorithm meets the specification, solves the ,right” task.
Correctness (wide) - algorithm is correct and safe (e.g. has ,,reasonable behaviour” for
incorrect or undefined inputs).

Algorithm is well-defined, if all the steps are final and unambiguous. Description of an
algorithm is always final — possibility to use algorithms as data (John von Neumann).
Halting property - total (always halts, solvable tasks) vs. partial (may not halt on some
inputs, semi-solvable tasks).

Determinism - determined vs. non-determined

Universality - algorithm solves a class of problems, not only some single testcases.

Complexity - time complexity, memory (space) complexity. Average, worst case.



Formal Models of Algorithms

e Turing machine, 1936-37

e Lambda-calculus (Church), 1941

e Post systems, 1943

e Markov algorithms, 1951

e Chomsky O-type grammars, 1959

e Programming languages, Sammet, 1969

Sammet (1969) - all these formal models express the same class of
algorithms



Asymptotic Behaviour of Algorithms

n - size of input data

* Time complexity (average A(n), worst case W(n), best case)
f(n) >0 - running time of an algorithm on input of size n

* Space complexity (average, worst case, best case)

f(n) > 0 - number of memory units needed to run an algorithm on
input of size n

Direct measurement using implementation of an algorithm - not
always reasonable

Estimation of growth counting ,meaningful® operations ( f(n) is a
number of operations performed by an algorithm on input of size n)



Big-Oh

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are
positive constants ¢ and n, such that f(n) < cg(n) for all n 2 n,

The big-Oh notation gives an upper bound on the growth rate of a
function

The statement “f(n) is O(g(n))” means that the growth rate of f(n) is no
more than the growth rate of g(n)

We can use the big-Oh notation to rank functions according to their
growth rate
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Big-Oh, Big-Omega, Big-Theta

f~0O(g) <=> 3¢ > 0,3In,>0, Vn > ny,: f(n)/g(n) <c
,f does not grow faster than g“

f~Q(g) <=> g~0O(f) <=> 3b > 0,3n,>0,Vn > n,;:f(n)/g(n) >b
,f does not grow slower than g“

f~0O(g) <=> f~0(g) & f~Q(g) <=>
<=> Vn > max(ny,n,): b<f(n)/g(n)<c
,f grows as fast as g“



Little-oh, little-omega

f~o(g) <=> Vc > 0: An,>0: Vn > no:% <c
gn
,f grows (much) slower than g“

f~w(g) <=> g~o(f) <=>Vb >0: In;>0:Vn > nl:% > b
gn
,f grows (much) faster than g“



Asymptotic features of relations

for each constant a>0: f(n) ~ O(af(n))

if f(n)<g(n) and g(n) ~ O(h(n)), then f(n) ~ O(h(n))

if f(n) ~ O(g(n)) and g(n) ~ O(h(n)), then f(n) ~ O(h(n))
f(n)+g(n) ~ O(maxif(n), g(n)})

if g(n) ~ O(h(n)), then f(n)+g(n) ~ O(f(n)+h(n))



if g(n)~ O(h(n)), then f(n)g(n) ~ O(f(n)h(n))

if f(n)=p0+p1n+...+pknk is a polynomial of degree k, then f(n) ~ O(nk)
for each natural number k: nk~ o(2")

for each natural number k: log n®=k log n ~ O(log n)

all logarithms are the same: log,n =log,n/log,b and a'°8"=n



Classes of complexity and examples

O(1) - searching the hash table

O(log n) - binary search

O(sgrt(n)) — function inversion in quantum computing (Grover)
O(n) - ,common sense”, naive pattern matching, special sort, ...
O(nlogn) - fast sort with comparision

O(n?) - naive sort, matrices

O(n?logn)

O(n3) - Floyd-Warshall

..., O(nk); 0O(2), O(n!), O(n"), O( 27(2~(2/(...)))) n times, where A
denotes exponent, ...



Infinite hierarhy of complexities

Ackermann function:

A(m,n)=A(m-1, A(m,n-1)), if m>0 and n>0
A(O,n) = n+1
A(m,0) = A(m-1,1), if m>0

Rekursioon
Keerulisem nédide - Ackermann funktsioon:
A(0, n) =n+l
A(m, 0) = A(m-1, 1) m=>0
A(m, n) = A(m-1, A(m, n-1)) m>0, n=0
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A(2,1) = A(LLA(2,00) = A(1,A(1,1)) = A(1, A(0,A{1,0))) =
= A(1, A(0,A(0,1))) = A(1, A0, 1)+1) = A(1,1+1+1) = A(1,3)=
= A(0,A(1,2)) = A(1,2)+1 = A(0,A(1,1))+1 = A(1,1+1+1 =
=A0A{LON2 =A0,0H1+2=A(0,1H3 =1+14+3 =3
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Undecidable and hard problems

Halting problem is undecidable

Input: any algorithm in its finite representation and input data for that
algorithm

Output: does the algorithm halt when executed on this data (yes/no)?
There is no general algorithm to solve this problem

Hard problem - no polynomial algorithm for the problem is known

Example: Hamiltonian cycle in a graph



In0(3): InelN 3ceR
: J

¥ > Mg * \J\(“) < C4%<.“>

g~ 0 3, e, 3c,eR
xvzh> V\z: fi}(n} -4 G, Q\(LQ

Wy 5= Yo (0 )v\?,\)

-

| . Q /‘ ..\.\\ . e
¥, & L) B0 €




Relative growth of running time
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