Analysis of Algorithms

Algorithms

Words ,algorithm” and ,algebra“ - Abu Ja'far Mohammed ibn M(sa al-Khowarizmi —
ca 825 AD, rules for performing arithmetic operations

Algorithm is an unambiguous (exact) instruction for solving a given task.

Algorithm consists of finite number of steps, each single step takes the final amount
of time and final amount of other resources. Even so, an algorithm may not halt
(terminate)!

Algorithm .ma}/ have inputs (set of input data) and _outPuts (set of output data) -
algorithm is often considered to be a data processing function.

If an algorithm finishes its work (terminates) for all possible inputs, it is called total.
If an algorithm may not terminate for some inputs, it is called partial.

If after each step the next step is uniquely defined, the algorithm is called .
deterministic, otherwise non-deterministic. Non-deterministic algorithm may give
different outputs when executed on the same inputs.

Properties of Algorithms

Correctness (narrow) - algorithm meets the specification, solves the ,right” task.
Correctness (wide) - algorithm is correct and safe (e.g. has ,,reasonable behaviour” for
incorrect or undefined inputs).

Algorithm is well-defined, if all the steps are final and unambiguous. Description of an
algorithm is always final — possibility to use algorithms as data (John von Neumann).
Halting property - total (always halts, solvable tasks) vs. partial (may not halt on some
inputs, semi-solvable tasks).

Determinism - determined vs. non-determined

Universality - algorithm solves a class of problems, not only some single testcases.

Complexity - time complexity, memory (space) complexity. Average, worst case.

Formal Models of Algorithms

e Turing machine, 1936-37

e Lambda-calculus (Church), 1941

e Post systems, 1943

e Markov algorithms, 1951

e Chomsky O-type grammars, 1959

e Programming languages, Sammet, 1969

Sammet (1969) - all these formal models express the same class of
algorithms

Asymptotic Behaviour of Algorithms

n - size of input data

* Time complexity (average A(n), worst case W(n), best case)
f(n) >0 - running time of an algorithm on input of size n

* Space complexity (average, worst case, best case)

f(n) > 0 - number of memory units needed to run an algorithm on
input of size n

Direct measurement using implementation of an algorithm - not
always reasonable

Estimation of growth counting ,meaningful® operations (f(n) is a
number of operations performed by an algorithm on input of size n)

Big-Oh

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are
positive constants ¢ and n, such that f(n) < cg(n) for all n 2 n,

The big-Oh notation gives an upper bound on the growth rate of a
function

The statement “f(n) is O(g(n))” means that the growth rate of f(n) is no
more than the growth rate of g(n)

We can use the big-Oh notation to rank functions according to their
growth rate

finy=gnn

ray

1
1
1
Fio ey

Fin) = CHgin) Fiat=Lgiaki
fh Y

Figure 2.1 Graphic examples of the 8, @, and £ aotations. In cach part. the
vafue of sy shown i3 the minimum possible value; any greater value would also
work., {(a) ©-notation bounds a function to within constant factors. We write
fin = Bginy) if there exist positive constants #sp, o, and - such that to the
right af »ng, the value of fix: always lies between r gin) and c-gin) inclusive.
(b} O-notation gives an upper bound for a function to within 2 constant factor.
We write [in) = {g/ay 1f there are posttive constants a; 2nd © such that to the
right of nn. the value of finl always ligs on or below cgn). (€) L2-notation gives a
lower bound for a function o within a constant factor. We wnte far — Lyind]
if there are positive constants #, and ¢ such that o the Aght of . the value of
Fia abways lics on or above cginl

Big-Oh, Big-Omega, Big-Theta

f~0O(g) <=> 3¢ > 0,3In,>0, Vn > ny,: f(n)/g(n) <c
,f does not grow faster than g“

f~Q(g) <=> g~0O(f) <=> 3b > 0,3n,>0,Vn > n,;:f(n)/g(n) >b
,f does not grow slower than g“

f~0O(g) <=> f~0(g) & f~Q(g) <=>
<=> Vn > max(ny,n,): b<f(n)/g(n)<c
,f grows as fast as g“

Little-oh, little-omega

f~o(g) <=> Vc > 0: An,>0: Vn > no:% <c
gn
,f grows (much) slower than g“

f~w(g) <=> g~o(f) <=>Vb >0: In;>0:Vn > nl:% > b
gn
,f grows (much) faster than g“

Asymptotic features of relations

for each constant a>0: f(n) ~ O(af(n))

if f(n)<g(n) and g(n) ~ O(h(n)), then f(n) ~ O(h(n))

if f(n) ~ O(g(n)) and g(n) ~ O(h(n)), then f(n) ~ O(h(n))
f(n)+g(n) ~ O(maxif(n), g(n)})

if g(n) ~ O(h(n)), then f(n)+g(n) ~ O(f(n)+h(n))

if g(n)~ O(h(n)), then f(n)g(n) ~ O(f(n)h(n))

if f(n)=p0+p1n+...+pknk is a polynomial of degree k, then f(n) ~ O(nk)
for each natural number k: nk~ o(2")

for each natural number k: log n®=k log n ~ O(log n)

all logarithms are the same: log,n =log,n/log,b and a'°8"=n

Classes of complexity and examples

O(1) - searching the hash table

O(log n) - binary search

O(sgrt(n)) — function inversion in quantum computing (Grover)
O(n) - ,common sense”, naive pattern matching, special sort, ...
O(nlogn) - fast sort with comparision

O(n?) - naive sort, matrices

O(n?logn)

O(n3) - Floyd-Warshall

..., O(nk); 0O(2), O(n!), O(n"), O(27(2~(2/(...)))) n times, where A
denotes exponent, ...

Infinite hierarhy of complexities

Ackermann function:

A(m,n)=A(m-1, A(m,n-1)), if m>0 and n>0
A(O,n) = n+1
A(m,0) = A(m-1,1), if m>0

Rekursioon
Keerulisem nédide - Ackermann funktsioon:
A(0, n) =n+l
A(m, 0) = A(m-1, 1) m=>0
A(m, n) = A(m-1, A(m, n-1)) m>0, n=0
0 1 2 3 4 5
0o | @ P @ ® @ & ®
1 2 / 3 4 e 5 6 T
2 3 5 7 9 11 13
o
3 5 13 29 61 125 253
o
4 13 65533

A(2,1) = A(LLA(2,00) = A(1,A(1,1)) = A(1, A(0,A{1,0))) =
= A(1, A(0,A(0,1))) = A(1, A0, 1)+1) = A(1,1+1+1) = A(1,3)=
= A(0,A(1,2)) = A(1,2)+1 = A(0,A(1,1))+1 = A(1,1+1+1 =
=A0A{LON2 =A0,0H1+2=A(0,1H3 =1+14+3 =3

83

Undecidable and hard problems

Halting problem is undecidable

Input: any algorithm in its finite representation and input data for that
algorithm

Output: does the algorithm halt when executed on this data (yes/no)?
There is no general algorithm to solve this problem

Hard problem - no polynomial algorithm for the problem is known

Example: Hamiltonian cycle in a graph

In0(3): InelN 3ceR
: J

¥ > Mg * \J\(“) < C4%<.“>

g~ 0 3, e, 3c,eR
xvzh> V\z: fi}(n} -4 G, Q\(LQ

Wy 5= Yo (0)v\?,\)

-

| . Q /‘ ..\.\\ . e
¥, & L) B0 €

Relative growth of running time

Frogremod L0

Lahendamisara suhteline

acg ¢ fln) sparenevntrte F(25) 0 (6]
ry 1

ca log n o

Cq Tt [

g 1t log 110}

£g T ar

¢g 1 125

P L

11l 5T

Joonis 2.1. Lahendamisaja suhteline kasvamine, kul alpandmete malit

sunurenest: H-1t 25-1o.

Keerukus

{tikrosek]

Suurirn rfesanne,
dile ahendamise
acy < 1 sek

rrifle lahetidamise

aey << 1 poew

n — 1000000

1

i log., n 1 = G2 7db
n? re = 1000
e = 101{}
an = 19

Tt o= U

Suurim ilesanne,

Suuritn twelesgnne,
mifle lahendarmizye
aeg - [aagta

= 270d 147 514

= 202938
n = 4421
= 36

7o = 14

n = BB 400 DU U0

i = 3T 530 Q00 G 000
TR 1GDOYE L00
= 56156492

t — 31533

n = 44

= 16

It —

Joonis 2.2 Frineva keerukuscga programmice ajalised piirid,

