Presentation for use with the textbook Data Structures and Algorithms in Java, $6^{\text {th }}$ edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Dynamic Programming

Matrix Chain-Products

- Dynamic Programming is a general algorithm design paradigm.
- Rather than give the general structure, let us first give a motivating example:
- Matrix Chain-Products

Review: Matrix Multiplication.

- $\boldsymbol{C}=\boldsymbol{A}$ * \boldsymbol{B}
- \boldsymbol{A} is $\boldsymbol{d} \times \boldsymbol{e}$ and \boldsymbol{B} is $\boldsymbol{e} \times \boldsymbol{f}$ $C[i, j]=\sum_{k=0}^{e-1} A[i, k] * B[k, j]$
- O(def) time

Matrix Chain-Products

Matrix Chain-Product:

- Compute $A=A_{0}{ }^{*} A_{1} * \ldots * A_{n-1}$
- A_{i} is $d_{i} \times d_{i+1}$
- Problem: How to parenthesize?
- Example
- B is 3×100
- C is 100×5
- D is 5×5
- (B*C)*D takes $1500+75=1575$ ops
- B* (C*D) takes $1500+2500=4000 \mathrm{ops}$

An Enumeration Approach

- Matrix Chain-Product Alg.:
- Try all possible ways to parenthesize $A=A_{0}{ }^{*} A_{1} * \ldots * A_{n-1}$
- Calculate number of ops for each one
- Pick the one that is best
- Running time:
- The number of paranethesizations is equal to the number of binary trees with n nodes
- This is exponential!
- It is called the Catalan number, and it is almost 4 n.
- This is a terrible algorithm!

A Greedy Approach

- Idea \#1: repeatedly select the product that uses (up) the most operations.
- Counter-example:
- A is 10×5
- B is 5×10
- C is 10×5
- D is 5×10
- Greedy idea \#1 gives (A*B)*(C*D), which takes $500+1000+500=2000$ ops
- $A^{*}\left(\left(B^{*} C\right) * D\right)$ takes $500+250+250=1000$ ops

Another Greedy Approach

- Idea \#2: repeatedly select the product that uses the fewest operations.
- Counter-example:
- A is 101×11
- B is 11×9
- C is 9×100
- D is 100×99
- Greedy idea \#2 gives $A^{*}\left(\left(B^{*} C\right) * D\right)$), which takes $109989+9900+108900=228789 \mathrm{ops}$
- (A*B)*(C*D) takes $9999+89991+89100=189090$ ops
- The greedy approach is not giving us the optimal value.

A "Recursive" Approach

- Define subproblems:

- Find the best parenthesization of $A_{i}{ }^{*} A_{i+1} * \ldots * A_{j}$.

- Let $N_{i, j}$ denote the number of operations done by this subproblem.
- The optimal solution for the whole problem is $\mathrm{N}_{0, \mathrm{n}-1}$.
- Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems
- There has to be a final multiplication (root of the expression tree) for the optimal solution.
- Say, the final multiply is at index i: $\left(\mathrm{A}_{0} * \ldots * \mathrm{~A}_{\mathrm{i}}\right) *\left(\mathrm{~A}_{\mathrm{i}+1} * \ldots \mathrm{~A}_{\mathrm{n}-1}\right)$.
- Then the optimal solution $N_{0, n-1}$ is the sum of two optimal subproblems, $N_{0, i}$ and $N_{i+1, n-1}$ plus the time for the last multiply.
- If the global optimum did not have these optimal subproblems, we could define an even better "optimal" solution.
© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming
7

A Characterizing Equation

- The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiply is at.
- Let us consider all possible places for that final multiply:
- Recall that A_{i} is a $d_{i} \times d_{i+1}$ dimensional matrix.
- So, a characterizing equation for $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ is the following:

$$
N_{i, j}=\min _{i \leq k<j}\left\{N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}
$$

- Note that subproblems are not independent--the subproblems overlap.

A Dynamic Programming Algorithm

- Since subproblems overlap, we don't use recursion.
- Instead, we construct optimal subproblems "bottom-up."
- $\mathrm{N}_{\mathrm{i}, \mathrm{i}}$'s are easy, so start with them
- Then do length 2,3, ... subproblems, and so on.
- The running time is $\mathrm{O}\left(\mathrm{n}^{3}\right)$

```
Algorithm matrixChain(S):
    Input: sequence \(\boldsymbol{S}\) of \(\boldsymbol{n}\) matrices to be multiplied
    Output: number of operations in an optimal
        paranethization of \(S\)
    for \(i \leftarrow 1\) to \(n-1\) do
        \(N_{i, i} \leftarrow 0\)
    for \(b \leftarrow 1\) to \(n-1\) do
        for \(i \leftarrow 0\) to \(n-b-1\) do
            \(j \leftarrow i+b\)
            \(N_{i, j} \leftarrow+\) infinity
            for \(\boldsymbol{k} \leftarrow \mathrm{i}\) to \(\boldsymbol{j}-\mathbf{1}\) do
                \(N_{i, j} \leftarrow \min \left\{N_{i, j}, N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}\)
```

 \(\mathrm{O}\left(\mathrm{n}^{3}\right)\)

Java Implementation

```
public static int[ [[ ] matrixChain(int[ ] d) {
    int n = d.length - 1; // number of matrices
    int[ ][ ] N = new int[n][n]; // n-by-n matrix; initially zeros
    for (int b=1; b < n; b++) // number of products in subchain
        for (int i=0; i < n - b; i++) { // start of subchain
            int j = i + b; // end of subchain
            N[i][j] = Integer.MAX_VALUE; // used as 'infinity'
            for (int k=i; k<j; k++)
            N[i][j] = Math.min(N[i][j],N[i][k] + N[k+1][j] + d[i]*d[k+1]*d[j+1]);
        }
    return N;
}
```


A Dynamic Programming Algorithm Visualization

- The bottom-up

$$
N_{i, j}=\min _{i \leqslant k<j}\left\{N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}
$$ construction fills in the N array by diagonals

- $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ gets values from pervious entries in i-th row and j-th column
- Filling in each entry in the N table takes O (n) time.
- Total run time: $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Getting actual parenthesization can be done by remembering "k" for each N entry

The General Dynamic Programming Technique

Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:

- Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, l, m , and so on.
- Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
- Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).

Subsequences

- A subsequence of a character string $x_{0} x_{1} x_{2} \ldots x_{n-1}$ is a string of the form $x_{i 1} x_{i_{2}} \ldots$ $\mathrm{x}_{\mathrm{i} \text {, }}$ where $\mathrm{i}_{\mathrm{j}}<\mathrm{i}_{\mathrm{i}+1}$.
- Not the same as substring!
- Example String: ABCDEFGHIJK
- Subsequence: ACEGJIK
- Subsequence: DFGHK
- Not subsequence: DAGH

The Longest Common Subsequence (LCS) Problem

- Given two strings X and Y, the longest common subsequence (LCS) problem is to find a longest subsequence common to both X and Y
- Has applications to DNA similarity testing (alphabet is $\{A, C, G, T\}$)
- Example: ABCDEFG and XZACKDFWGH have ACDFG as a longest common subsequence

A Poor Approach to the LCS Problem

- A Brute-force solution:
- Enumerate all subsequences of X
- Test which ones are also subsequences of Y
- Pick the longest one.
- Analysis:
- If X is of length n, then it has 2^{n} subsequences
- This is an exponential-time algorithm!

A Dynamic-Programming Approach to the LCS Problem

- Define $L[i, j]$ to be the length of the longest common subsequence of $\mathrm{X}[0 . . \mathrm{i}]$ and $\mathrm{Y}[0 . . \mathrm{j}]$.
- Allow for -1 as an index, so $\mathrm{L}[-1, \mathrm{k}]=0$ and $\mathrm{L}[\mathrm{k},-1]=0$, to indicate that the null part of X or Y has no match with the other.
- Then we can define $L[i, j]$ in the general case as follows:

1. If $x i=y j$, then $L[i, j]=L[i-1, j-1]+1$ (we can add this match)
2. If $x i \neq y j$, then $L[i, j]=\max \{L[i-1, j], L[i, j-1]\}$ (we have no match here)

Case 1:

01234567891011

Case 2:

An LCS Algorithm

```
Algorithm LCS (X,Y ):
Input: Strings \(X\) and \(Y\) with \(n\) and \(m\) elements, respectively
Output: For \(\mathrm{i}=0, \ldots, \mathrm{n}-1, \mathrm{j}=0, \ldots, \mathrm{~m}-1\), the length \(\mathrm{L}[\mathrm{i}, \mathrm{j}]\) of a longest string
        that is a subsequence of both the string \(X[0 . . i]=x_{0} x_{1} x_{2} \ldots x_{i}\) and the
        string \(Y[0 . . j]=y_{0} y_{1} y_{2} \ldots y_{j}\)
for \(\mathrm{i}=1\) to \(\mathrm{n}-1\) do
        \(L[i,-1]=0\)
for \(\mathrm{j}=0\) to \(\mathrm{m}-1\) do
    \(\mathrm{L}[-1, j]=0\)
for \(\mathrm{i}=0\) to \(\mathrm{n}-1\) do
    for \(\mathrm{j}=0\) to \(\mathrm{m}-1\) do
        if \(x_{i}=y_{j}\) then
            \(L[i, j]=L[i-1, j-1]+1\)
        else
            \(L[i, j]=\max \{L[i-1, j], L[i, j-1]\}\)
return array L
```


Visualizing the LCS Algorithm

\boldsymbol{L}	-1	0	1	2	3	4	5	6	7	8	9	10	11
-1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1	1	1	1	1	1	1
1	0	0	1	1	2	2	2	2	2	2	2	2	2
2	0	0	1	1	2	2	2	3	3	3	3	3	3
3	0	1	1	1	2	2	2	3	3	3	3	3	3
4	0	$\mathbf{1}$	1	1	2	2	2	3	3	3	3	3	3
5	0	1	1	1	$\mathbf{2}$	2	2	3	4	4	4	4	4
6	0	1	1	2	2	$\mathbf{3}$	3	3	4	4	5	5	5
7	0	1	1	2	2	3	4	4	4	4	5	5	6
8	0	1	1	2	3	3	4	5	$\mathbf{5}$	5	5	5	6
9	0	1	1	2	3	4	4	5	5	5	6	6	$\mathbf{6}$

Analysis of LCS Algorithm

- We have two nested loops
- The outer one iterates n times
- The inner one iterates m times
- A constant amount of work is done inside each iteration of the inner loop
- Thus, the total running time is $\mathrm{O}(\mathrm{nm})$
- Answer is contained in $L[n, m]$ (and the subsequence can be recovered from the L table).

Java Implementation

```
/** Returns table such that L[j][k] is length of LCS for X[0..j-1] and Y[0..k-1].*/
public static int[ ][ ] LCS(char[ ] X, char[ ] Y) {
    int n = X.length;
    int m = Y.length;
    int[ ][ ] L = new int[n+1][m+1];
    for (int j=0; j < n; j++)
        for (int k=0;k<m;k++)
            if (X[j] == Y[k]) // align this match
                L[j+1][k+1]=L[j][k] + 1;
            else // choose to ignore one character
                L[j+1][k+1] = Math.max(L[j][k+1], L[j+1][k]);
    return L;
}
```


Java Implementation, Output of the Solution

```
/** Returns the longest common substring of X and Y, given LCS table L. */
public static char[ ] reconstructLCS(char[ ] X, char[ ] Y, int[ ][ ] L) {
    StringBuilder solution = new StringBuilder();
    int j = X.length;
    int k = Y.length;
    while (L[j][k]>0) // common characters remain
        if (X[j-1] == Y[k-1]) {
        solution.append(X[j-1]);
        j--;
        k--;
        } else if (L[j-1][k]>= L[j][k-1])
        j--;
        else
        k--;
    // return left-to-right version, as char array
    return solution.reverse( ).toString( ).toCharArray( );
}
```

