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Dynamic Programming 

Presentation for use with the textbook Data Structures and 
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, 
and M. H. Goldwasser, Wiley, 2014 
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Matrix Chain-Products 
! Dynamic Programming is a general 

algorithm design paradigm. 
n  Rather than give the general structure, let us 

first give a motivating example: 
n  Matrix Chain-Products 

! Review: Matrix Multiplication. 
n  C = A*B 
n  A is d × e and B is e × f 

n  O(def ) time 
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Matrix Chain-Products 
! Matrix Chain-Product: 

n  Compute A=A0*A1*…*An-1 

n  Ai is di × di+1 

n  Problem: How to parenthesize? 

! Example 
n  B is 3 × 100 
n  C is 100 × 5 
n  D is 5 × 5 
n  (B*C)*D takes 1500 + 75 = 1575 ops 
n  B*(C*D) takes 1500 + 2500 = 4000 ops 
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An Enumeration Approach 
! Matrix Chain-Product Alg.: 

n  Try all possible ways to parenthesize 
A=A0*A1*…*An-1 

n  Calculate number of ops for each one 
n  Pick the one that is best 

! Running time: 
n  The number of paranethesizations is equal 

to the number of binary trees with n nodes 
n  This is exponential! 
n  It is called the Catalan number, and it is 

almost 4n. 
n  This is a terrible algorithm! 
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A Greedy Approach 
! Idea #1: repeatedly select the product that 

uses (up) the most operations. 
! Counter-example:  

n  A is 10 × 5 
n  B is 5 × 10 
n  C is 10 × 5 
n  D is 5 × 10 
n  Greedy idea #1 gives (A*B)*(C*D), which takes 

500+1000+500 = 2000 ops 
n  A*((B*C)*D) takes 500+250+250 = 1000 ops 
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Another Greedy Approach 
! Idea #2: repeatedly select the product that uses 

the fewest operations. 
! Counter-example:  

n  A is 101 × 11 
n  B is 11 × 9 
n  C is 9 × 100 
n  D is 100 × 99 
n  Greedy idea #2 gives A*((B*C)*D)), which takes 

109989+9900+108900=228789 ops 
n  (A*B)*(C*D) takes 9999+89991+89100=189090 ops 

! The greedy approach is not giving us the optimal 
value. 



Dynamic Programming 3/29/14 21:19 

4 

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 7 

A “Recursive” Approach 
! Define subproblems: 

n  Find the best parenthesization of Ai*Ai+1*…*Aj. 
n  Let Ni,j denote the number of operations done by this 

subproblem. 
n  The optimal solution for the whole problem is N0,n-1. 

! Subproblem optimality: The optimal solution can be 
defined in terms of optimal subproblems 
n  There has to be a final multiplication (root of the expression 

tree) for the optimal solution.   
n  Say, the final multiply is at index i: (A0*…*Ai)*(Ai+1*…*An-1). 
n  Then the optimal solution N0,n-1 is the sum of two optimal 

subproblems, N0,i and Ni+1,n-1 plus the time for the last multiply. 
n   If the global optimum did not have these optimal 

subproblems, we could define an even better “optimal” 
solution. 
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A Characterizing 
Equation 
! The global optimal has to be defined in terms of 

optimal subproblems, depending on where the final 
multiply is at. 

! Let us consider all possible places for that final multiply: 
n  Recall that Ai is a di × di+1 dimensional matrix. 
n  So, a characterizing equation for Ni,j is the following: 

! Note that subproblems are not independent--the 
subproblems overlap. 

}{min 11,1,, +++
<≤

++= jkijkkijkiji dddNNN
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A Dynamic Programming 
Algorithm 
! Since subproblems 

overlap, we don’t 
use recursion. 

! Instead, we 
construct optimal 
subproblems 
“bottom-up.”  

! Ni,i’s are easy, so 
start with them 

! Then do length 2,3,
… subproblems, and 
so on. 

! The running time is 
O(n3) 

Algorithm matrixChain(S): 
 Input: sequence S of n matrices to be multiplied 
 Output: number of operations in an optimal   
  paranethization of S 
for i ← 1 to n-1 do 

 Ni,i ← 0  
for b ← 1 to n-1 do 

 for i ← 0 to n-b-1 do 
  j ← i+b 
   Ni,j ← +infinity 
  for k ← i to j-1 do 
    Ni,j ← min{Ni,j , Ni,k +Nk+1,j +di dk+1 dj+1} 
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A Dynamic Programming 
Algorithm Visualization 

! The bottom-up 
construction fills in the 
N array by diagonals 

! Ni,j gets values from 
pervious entries in i-th 
row and j-th column  

! Filling in each entry in 
the N table takes O(n) 
time. 

! Total run time: O(n3) 
! Getting actual 

parenthesization can be 
done by remembering 
“k” for each N entry 

}{min 11,1,, +++
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The General Dynamic 
Programming Technique 
! Applies to a problem that at first seems to 

require a lot of time (possibly exponential), 
provided we have: 
n  Simple subproblems: the subproblems can be 

defined in terms of a few variables, such as j, k, l, 
m, and so on. 

n  Subproblem optimality: the global optimum value 
can be defined in terms of optimal subproblems 

n  Subproblem overlap: the subproblems are not 
independent, but instead they overlap (hence, 
should be constructed bottom-up). 
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Subsequences 
! A subsequence of a character string 

x0x1x2…xn-1 is a string of the form xi1xi2…
xik, where ij < ij+1. 

! Not the same as substring! 
! Example String: ABCDEFGHIJK 

n  Subsequence: ACEGJIK 
n  Subsequence: DFGHK 
n  Not subsequence: DAGH 

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 14 

The Longest Common 
Subsequence (LCS) Problem 
! Given two strings X and Y, the longest 

common subsequence (LCS) problem is 
to find a longest subsequence common 
to both X and Y 

! Has applications to DNA similarity 
testing (alphabet is {A,C,G,T}) 

! Example: ABCDEFG and XZACKDFWGH 
have ACDFG as a longest common 
subsequence 
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A Poor Approach to the 
LCS Problem 
! A Brute-force solution:  

n  Enumerate all subsequences of X 
n  Test which ones are also subsequences of Y 
n  Pick the longest one. 

! Analysis: 
n  If X is of length n, then it has 2n 

subsequences 
n  This is an exponential-time algorithm! 
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A Dynamic-Programming 
Approach to the LCS Problem 
! Define L[i,j] to be the length of the longest common 

subsequence of X[0..i] and Y[0..j]. 
! Allow for -1 as an index, so L[-1,k] = 0 and L[k,-1]=0, to 

indicate that the null part of X or Y has no match with the 
other. 

! Then we can define L[i,j] in the general case as follows: 
1.  If xi=yj, then L[i,j] = L[i-1,j-1] + 1 (we can add this match) 
2.  If xi≠yj, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we have no 

match here) 

Case 1: Case 2: 
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An LCS Algorithm 
Algorithm LCS(X,Y ):        
Input:  Strings X and Y with n and m elements, respectively 
Output: For i = 0,…,n-1, j = 0,...,m-1, the length L[i, j] of a longest string 

that is a subsequence of both the string X[0..i] = x0x1x2…xi  and the 
string Y [0.. j] = y0y1y2…yj      

for i =1 to n-1 do   
 L[i,-1] = 0        

for j =0 to m-1 do    
 L[-1,j] = 0      

for i =0 to n-1 do       
 for j =0 to m-1 do      
  if xi = yj  then 
   L[i, j] = L[i-1, j-1] + 1     
  else         
   L[i, j] = max{L[i-1, j] , L[i, j-1]}    

return array L     
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Visualizing the LCS Algorithm 
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Analysis of LCS Algorithm 
! We have two nested loops 

n  The outer one iterates n times 
n  The inner one iterates m times 
n  A constant amount of work is done inside 

each iteration of the inner loop 
n  Thus, the total running time is O(nm) 

! Answer is contained in L[n,m] (and the 
subsequence can be recovered from the 
L table). 
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Java Implementation 
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Java Implementation, 
Output of the Solution 
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