
Dynamic Programming 3/29/14 21:19

1

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 1

Dynamic Programming

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 2

Matrix Chain-Products
! Dynamic Programming is a general

algorithm design paradigm.
n  Rather than give the general structure, let us

first give a motivating example:
n  Matrix Chain-Products

! Review: Matrix Multiplication.
n  C = A*B
n  A is d × e and B is e × f

n  O(def) time
A C

B

d d

f

e

f

e

i

j

i,j

∑
−

=

=
1

0

],[*],[],[
e

k
jkBkiAjiC

Dynamic Programming 3/29/14 21:19

2

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 3

Matrix Chain-Products
! Matrix Chain-Product:

n  Compute A=A0*A1*…*An-1

n  Ai is di × di+1

n  Problem: How to parenthesize?

! Example
n  B is 3 × 100
n  C is 100 × 5
n  D is 5 × 5
n  (B*C)*D takes 1500 + 75 = 1575 ops
n  B*(C*D) takes 1500 + 2500 = 4000 ops

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 4

An Enumeration Approach
! Matrix Chain-Product Alg.:

n  Try all possible ways to parenthesize
A=A0*A1*…*An-1

n  Calculate number of ops for each one
n  Pick the one that is best

! Running time:
n  The number of paranethesizations is equal

to the number of binary trees with n nodes
n  This is exponential!
n  It is called the Catalan number, and it is

almost 4n.
n  This is a terrible algorithm!

Dynamic Programming 3/29/14 21:19

3

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 5

A Greedy Approach
! Idea #1: repeatedly select the product that

uses (up) the most operations.
! Counter-example:

n  A is 10 × 5
n  B is 5 × 10
n  C is 10 × 5
n  D is 5 × 10
n  Greedy idea #1 gives (A*B)*(C*D), which takes

500+1000+500 = 2000 ops
n  A*((B*C)*D) takes 500+250+250 = 1000 ops

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 6

Another Greedy Approach
! Idea #2: repeatedly select the product that uses

the fewest operations.
! Counter-example:

n  A is 101 × 11
n  B is 11 × 9
n  C is 9 × 100
n  D is 100 × 99
n  Greedy idea #2 gives A*((B*C)*D)), which takes

109989+9900+108900=228789 ops
n  (A*B)*(C*D) takes 9999+89991+89100=189090 ops

! The greedy approach is not giving us the optimal
value.

Dynamic Programming 3/29/14 21:19

4

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 7

A “Recursive” Approach
! Define subproblems:

n  Find the best parenthesization of Ai*Ai+1*…*Aj.
n  Let Ni,j denote the number of operations done by this

subproblem.
n  The optimal solution for the whole problem is N0,n-1.

! Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems
n  There has to be a final multiplication (root of the expression

tree) for the optimal solution.
n  Say, the final multiply is at index i: (A0*…*Ai)*(Ai+1*…*An-1).
n  Then the optimal solution N0,n-1 is the sum of two optimal

subproblems, N0,i and Ni+1,n-1 plus the time for the last multiply.
n  If the global optimum did not have these optimal

subproblems, we could define an even better “optimal”
solution.

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 8

A Characterizing
Equation
! The global optimal has to be defined in terms of

optimal subproblems, depending on where the final
multiply is at.

! Let us consider all possible places for that final multiply:
n  Recall that Ai is a di × di+1 dimensional matrix.
n  So, a characterizing equation for Ni,j is the following:

! Note that subproblems are not independent--the
subproblems overlap.

}{min 11,1,, +++
<≤

++= jkijkkijkiji dddNNN

Dynamic Programming 3/29/14 21:19

5

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 9

A Dynamic Programming
Algorithm
! Since subproblems

overlap, we don’t
use recursion.

! Instead, we
construct optimal
subproblems
“bottom-up.”

! Ni,i’s are easy, so
start with them

! Then do length 2,3,
… subproblems, and
so on.

! The running time is
O(n3)

Algorithm matrixChain(S):
 Input: sequence S of n matrices to be multiplied
 Output: number of operations in an optimal
 paranethization of S
for i ← 1 to n-1 do

 Ni,i ← 0
for b ← 1 to n-1 do

 for i ← 0 to n-b-1 do
 j ← i+b
 Ni,j ← +infinity
 for k ← i to j-1 do
 Ni,j ← min{Ni,j , Ni,k +Nk+1,j +di dk+1 dj+1}

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation

Dynamic Programming 10

Dynamic Programming 3/29/14 21:19

6

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 11

answer N 0 1

0
1

2 …

n-1

…

n-1 j

i

A Dynamic Programming
Algorithm Visualization

! The bottom-up
construction fills in the
N array by diagonals

! Ni,j gets values from
pervious entries in i-th
row and j-th column

! Filling in each entry in
the N table takes O(n)
time.

! Total run time: O(n3)
! Getting actual

parenthesization can be
done by remembering
“k” for each N entry

}{min 11,1,, +++
<≤

++= jkijkkijkiji dddNNN

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 12

The General Dynamic
Programming Technique
! Applies to a problem that at first seems to

require a lot of time (possibly exponential),
provided we have:
n  Simple subproblems: the subproblems can be

defined in terms of a few variables, such as j, k, l,
m, and so on.

n  Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

n  Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

Dynamic Programming 3/29/14 21:19

7

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 13

Subsequences
! A subsequence of a character string

x0x1x2…xn-1 is a string of the form xi1xi2…
xik, where ij < ij+1.

! Not the same as substring!
! Example String: ABCDEFGHIJK

n  Subsequence: ACEGJIK
n  Subsequence: DFGHK
n  Not subsequence: DAGH

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 14

The Longest Common
Subsequence (LCS) Problem
! Given two strings X and Y, the longest

common subsequence (LCS) problem is
to find a longest subsequence common
to both X and Y

! Has applications to DNA similarity
testing (alphabet is {A,C,G,T})

! Example: ABCDEFG and XZACKDFWGH
have ACDFG as a longest common
subsequence

Dynamic Programming 3/29/14 21:19

8

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 15

A Poor Approach to the
LCS Problem
! A Brute-force solution:

n  Enumerate all subsequences of X
n  Test which ones are also subsequences of Y
n  Pick the longest one.

! Analysis:
n  If X is of length n, then it has 2n

subsequences
n  This is an exponential-time algorithm!

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 16

A Dynamic-Programming
Approach to the LCS Problem
! Define L[i,j] to be the length of the longest common

subsequence of X[0..i] and Y[0..j].
! Allow for -1 as an index, so L[-1,k] = 0 and L[k,-1]=0, to

indicate that the null part of X or Y has no match with the
other.

! Then we can define L[i,j] in the general case as follows:
1.  If xi=yj, then L[i,j] = L[i-1,j-1] + 1 (we can add this match)
2.  If xi≠yj, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we have no

match here)

Case 1: Case 2:

Dynamic Programming 3/29/14 21:19

9

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 17

An LCS Algorithm
Algorithm LCS(X,Y):
Input: Strings X and Y with n and m elements, respectively
Output: For i = 0,…,n-1, j = 0,...,m-1, the length L[i, j] of a longest string

that is a subsequence of both the string X[0..i] = x0x1x2…xi and the
string Y [0.. j] = y0y1y2…yj

for i =1 to n-1 do
 L[i,-1] = 0

for j =0 to m-1 do
 L[-1,j] = 0

for i =0 to n-1 do
 for j =0 to m-1 do
 if xi = yj then
 L[i, j] = L[i-1, j-1] + 1
 else
 L[i, j] = max{L[i-1, j] , L[i, j-1]}

return array L

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 18

Visualizing the LCS Algorithm

Dynamic Programming 3/29/14 21:19

10

© 2014 Goodrich, Tamassia, Goldwasser Dynamic Programming 19

Analysis of LCS Algorithm
! We have two nested loops

n  The outer one iterates n times
n  The inner one iterates m times
n  A constant amount of work is done inside

each iteration of the inner loop
n  Thus, the total running time is O(nm)

! Answer is contained in L[n,m] (and the
subsequence can be recovered from the
L table).

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation

Dynamic Programming 20

Dynamic Programming 3/29/14 21:19

11

© 2014 Goodrich, Tamassia, Goldwasser

Java Implementation,
Output of the Solution

Dynamic Programming 21

