[3]a]

G

Adaptable Priority
Queues

© 2004 Goodrich, Tamassia Adaptable Priority Queues 1

Recall the Entry and Priority
 Queue ADTs (§ 7.1)

An entry stores a (key, # Priority Queue ADT:
value) pair within a = insert(k, X)
data structure inserts an entry with
Methods of the entry key.kand value x
ADT: = removeMin()
: removes and returns
= key(): returns the key the entry with
associated with this smallest key
entry ;
= min()
= value(): returns the returns, but does not
value pa”‘IEd Wlth the] remove, an entry
key associated with this with smallest key
entry » size(), isEmpty()
© 2004 Goodrich, Tamassia Adaptable Priority Queues 2

Motivating Example

Suppose we have an online trading system where
orders to purchase and sell a given stock are stored
in two priority queues (one for sell orders and one for
buy orders) as (p,s) entries:

= The key, p, of an order is the price
= The value, s, for an entry is the number of shares

= A buy order (p,s) is executed when a sell order (p’,s") with
price p’<p is added (the execution is complete if s'>s)

= A sell order (p,s) is executed when a buy order (p’,s") with
price p’>p is added (the execution is complete if s'>s)
What if someone wishes to cancel their order before
it executes?
What if someone wishes to update the price or
number of shares for their order?

© 2004 Goodrich, Tamassia Adaptable Priority Queues 3

Methods of the Adaptable
~ Priority Queue ADT (§ 7.4)

#®remove(e): Remove from Pand return
entry e.

#®replaceKey(e k): Replace with k£ and
return the key of entry e of P, an error
condition occurs if kis invalid (that is, &
cannot becompared with other keys).

#®replaceValue(e x): Replace with xand
return the value of entry e of A.

© 2004 Goodrich, Tamassia Adaptable Priority Queues 4

Example

Operation Output P
insert(5,4) e (5,4)
insert(3,B) e, (3,B),(5,4)
insert(7,C) e, (3,B),(5,4),(7,C)
min() e, (3,B),(5,4),(7,C)
key(e,) 3 (3,B),(5,4),(7,C)
remove(e,) e (3,B),(7,C)
replaceKey(e,,9) 3 (7,0),(9,B)
replaceValue(e;,D) & (7,D),(9,B)
remove(e,) e, (7,D)

© 2004 Goodrich, Tamassia Adaptable Priority Queues 5

Locating Entries

#1n order to implement the operations
remove(k), replaceKey(e), and
replaceValue(k), we need fast ways of
locating an entry e in a priority queue.

#®We can always just search the entire
data structure to find an entry e, but
there are better ways for locating
entries.

© 2004 Goodrich, Tamassia Adaptable Priority Queues 6

Location-Aware Entries ;‘{a

A locator-aware entry identifies and tracks
the location of its (key, value) object within a
data structure

Intuitive notion:

= Coat claim check
= Valet claim ticket
= Reservation number

Main idea:
= Since entries are created and returned from the
data structure itself, it can return location- anare
entries, thereby making future updates easier

© 2004 Goodrich, Tamassia Adaptable Priority Queues 7

List Implementation

A location ware list entry is an object storing

= key

= value

= position (or rank) of the item in the list
4 In turn, the position (or array cell) stores the entry
Back pointers (or ranks) are updated during swaps

header | nodes/ positions\} trailer

El<>|/|(|@|<|@|,|@|,|@tz|

© 2004 Goodrich, Tama55|a Adaptable Priority Queues 8

‘Heap Implementation Performance

A location ware
heap entry is an
object storing

Using location-aware entries we can achieve
the following running times (times better than
those achievable without location-aware

. tsne entries are highlighted in red):
= position of the entry Method Unsorted List Sorted List Heap
e Underlying size, iSEmpty o(1) o(1) o(1)
@ In turn, each heap insert o(1) O(n) O(log n)
position stores an min O(n) o(1) o(1)
entry removeMin O(n) o(1) O(log n)
Back pointers are remove oQ) oQ) O(log n)
ggsatg\?vg usr ng (o]] replaceKey oQ) O(n) O(log n)
Y P N, replaceValue oQ) oQ) o)
© 2004 Goodrich, Tamassia Adaptable Priority Queues 9 © 2004 Goodrich, Tamassia Adaptable Priority Queues 10

