
Adaptable Priority Queues 1© 2004 Goodrich, Tamassia

Adaptable Priority 
Queues

3 a

5 g 4 e

Adaptable Priority Queues 2© 2004 Goodrich, Tamassia

Recall the Entry and Priority 
Queue ADTs (§ 7.1)

An entry stores a (key, 
value) pair within a 
data structure
Methods of the entry 
ADT:

key(): returns the key 
associated with this 
entry
value(): returns the 
value paired with the 
key associated with this 
entry

Priority Queue ADT:
insert(k, x)
inserts an entry with 
key k and value x
removeMin()
removes and returns 
the entry with 
smallest key
min()
returns, but does not 
remove, an entry 
with smallest key
size(), isEmpty()

Adaptable Priority Queues 3© 2004 Goodrich, Tamassia

Motivating Example
Suppose we have an online trading system where 
orders to purchase and sell a given stock are stored 
in two priority queues (one for sell orders and one for 
buy orders) as (p,s) entries:

The key, p, of an order is the price
The value, s, for an entry is the number of shares
A buy order (p,s) is executed when a sell order (p’,s’) with 
price p’<p is added (the execution is complete if s’>s)
A sell order (p,s) is executed when a buy order (p’,s’) with 
price p’>p is added (the execution is complete if s’>s)

What if someone wishes to cancel their order before 
it executes?
What if someone wishes to update the price or 
number of shares for their order?

Adaptable Priority Queues 4© 2004 Goodrich, Tamassia

Methods of the Adaptable 
Priority Queue ADT (§ 7.4)

remove(e): Remove from P and return 
entry e.
replaceKey(e,k): Replace with k and 
return the key of entry e of P; an error 
condition occurs if k is invalid (that is, k 
cannot becompared with other keys).
replaceValue(e,x): Replace with x and 
return the value of entry e of P.



Adaptable Priority Queues 5© 2004 Goodrich, Tamassia

Example
Operation Output P
insert(5,A) e1 (5,A)
insert(3,B) e2 (3,B),(5,A)
insert(7,C) e3 (3,B),(5,A),(7,C)
min() e2 (3,B),(5,A),(7,C)
key(e2) 3 (3,B),(5,A),(7,C)
remove(e1) e1 (3,B),(7,C)
replaceKey(e2,9) 3 (7,C),(9,B)
replaceValue(e3,D) C (7,D),(9,B)
remove(e2) e2 (7,D)

Adaptable Priority Queues 6© 2004 Goodrich, Tamassia

Locating Entries

In order to implement the operations 
remove(k), replaceKey(e), and 
replaceValue(k), we need fast ways of 
locating an entry e in a priority queue.
We can always just search the entire 
data structure to find an entry e, but 
there are better ways for locating 
entries.

Adaptable Priority Queues 7© 2004 Goodrich, Tamassia

Location-Aware Entries

A locator-aware entry identifies and tracks 
the location of its (key, value) object within a 
data structure
Intuitive notion:

Coat claim check
Valet claim ticket
Reservation number

Main idea:
Since entries are created and returned from the 
data structure itself, it can return location- aware 
entries, thereby making future updates easier

Adaptable Priority Queues 8© 2004 Goodrich, Tamassia

List Implementation
A location- aware list entry is an object storing

key
value
position (or rank) of the item in the list

In turn, the position (or array cell) stores the entry
Back pointers (or ranks) are updated during swaps

trailerheader nodes/positions

entries

2 c 4 c 5 c 8 c



Adaptable Priority Queues 9© 2004 Goodrich, Tamassia

Heap Implementation
A location- aware 
heap entry is an 
object storing

key
value
position of the entry 
in the underlying 
heap

In turn, each heap 
position stores an 
entry
Back pointers are 
updated during 
entry swaps

4 a

2 d

6 b

8 g 5 e 9 c

Adaptable Priority Queues 10© 2004 Goodrich, Tamassia

Performance
Using location-aware entries we can achieve 
the following running times (times better than 
those achievable without location-aware 
entries are highlighted in red):

Method Unsorted List Sorted List Heap
size, isEmpty O(1) O(1) O(1)
insert O(1) O(n) O(log n)
min O(n) O(1) O(1)
removeMin O(n) O(1) O(log n)
remove O(1) O(1) O(log n)
replaceKey O(1) O(n) O(log n)
replaceValue O(1) O(1) O(1)


