
Dictionaries 1© 2004 Goodrich, Tamassia

Dictionaries

6

92

41 8

<

>

=

Dictionaries 2© 2004 Goodrich, Tamassia

Dictionary ADT (§ 8.3)
The dictionary ADT models a
searchable collection of key-
element entries
The main operations of a
dictionary are searching,
inserting, and deleting items
Multiple items with the same
key are allowed
Applications:

word-definition pairs
credit card authorizations
DNS mapping of host names
(e.g., datastructures.net) to
internet IP addresses (e.g.,
128.148.34.101)

Dictionary ADT methods:
find(k): if the dictionary
has an entry with key k,
returns it, else, returns
null
findAll(k): returns an
iterator of all entries with
key k
insert(k, o): inserts and
returns the entry (k, o)
remove(e): remove the
entry e from the
dictionary
entries(): returns an
iterator of the entries in
the dictionary
size(), isEmpty()

Dictionaries 3© 2004 Goodrich, Tamassia

Example
Operation Output Dictionary
insert(5,A) (5,A) (5,A)
insert(7,B) (7,B) (5,A),(7,B)
insert(2,C) (2,C) (5,A),(7,B),(2,C)
insert(8,D) (8,D) (5,A),(7,B),(2,C),(8,D)
insert(2,E) (2,E) (5,A),(7,B),(2,C),(8,D),(2,E)
find(7) (7,B) (5,A),(7,B),(2,C),(8,D),(2,E)
find(4) null (5,A),(7,B),(2,C),(8,D),(2,E)
find(2) (2,C) (5,A),(7,B),(2,C),(8,D),(2,E)
findAll(2) (2,C),(2,E) (5,A),(7,B),(2,C),(8,D),(2,E)
size() 5 (5,A),(7,B),(2,C),(8,D),(2,E)
remove(find(5)) (5,A) (7,B),(2,C),(8,D),(2,E)
find(5) null (7,B),(2,C),(8,D),(2,E)

Dictionaries 4© 2004 Goodrich, Tamassia

A List-Based Dictionary
A log file or audit trail is a dictionary implemented by means of
an unsorted sequence

We store the items of the dictionary in a sequence (based on a
doubly-linked list or array), in arbitrary order

Performance:
insert takes O(1) time since we can insert the new item at the
beginning or at the end of the sequence
find and remove take O(n) time since in the worst case (the item is
not found) we traverse the entire sequence to look for an item with
the given key

The log file is effective only for dictionaries of small size or for
dictionaries on which insertions are the most common
operations, while searches and removals are rarely performed
(e.g., historical record of logins to a workstation)

Dictionaries 5© 2004 Goodrich, Tamassia

The findAll(k) Algorithm
Algorithm findAll(k):
Input: A key k
Output: An iterator of entries with key equal to k

Create an initially- empty list L
B = D.entries()
while B.hasNext() do

e = B.next()
if e.key() = k then

L.insertLast(e)
return L.elements()

Dictionaries 6© 2004 Goodrich, Tamassia

The insert and remove Methods
Algorithm insert(k,v):
Input: A key k and value v
Output: The entry (k,v) added to D
Create a new entry e = (k,v)
S.insertLast(e) {S is unordered}
return e

Algorithm remove(e):
Input: An entry e
Output: The removed entry e or null if e was not in D
{We don’t assume here that e stores its location in S}
B = S.positions()
while B.hasNext() do

p = B.next()
if p.element() = e then

S.remove(p)
return e

return null {there is no entry e in D}

Dictionaries 7© 2004 Goodrich, Tamassia

Hash Table Implementation

We can also create a hash-table
dictionary implementation.
If we use separate chaining to handle
collisions, then each operation can be
delegated to a list-based dictionary
stored at each hash table cell.

Dictionaries 8© 2004 Goodrich, Tamassia

Binary Search
Binary search performs operation find(k) on a dictionary
implemented by means of an array-based sequence, sorted by key

similar to the high-low game
at each step, the number of candidate items is halved
terminates after a logarithmic number of steps

Example: find(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

l=m =h

Dictionaries 9© 2004 Goodrich, Tamassia

Search Table
A search table is a dictionary implemented by means of a sorted
array

We store the items of the dictionary in an array-based sequence,
sorted by key
We use an external comparator for the keys

Performance:
find takes O(log n) time, using binary search
insert takes O(n) time since in the worst case we have to shift n/2
items to make room for the new item
remove takes O(n) time since in the worst case we have to shift n/2
items to compact the items after the removal

A search table is effective only for dictionaries of small size or
for dictionaries on which searches are the most common
operations, while insertions and removals are rarely performed
(e.g., credit card authorizations)

