Skip Lists

What is a Skip List

- A skip list for a set S of distinct (key, element) items is a series of lists $\boldsymbol{S}_{0}, \boldsymbol{S}_{1}, \ldots, \boldsymbol{S}_{\boldsymbol{h}}$ such that
- Each list S_{i} contains the special keys $+\infty$ and $-\infty$
- List S_{0} contains the keys of S in nondecreasing order
- Each list is a subsequence of the previous one, i.e.,

$$
\boldsymbol{S}_{0} \supseteq \boldsymbol{S}_{1} \supseteq \ldots \supseteq \boldsymbol{S}_{h}
$$

- List S_{h} contains only the two special keys
- We show how to use a skip list to implement the dictionary ADT
$S_{3}-\infty \quad++\infty$
S_{2}

\boldsymbol{S}_{1}

\boldsymbol{S}_{0}

Search

- We search for a key x in a a skip list as follows:
- We start at the first position of the top list
- At the current position p, we compare x with $\boldsymbol{y} \leftarrow \boldsymbol{\operatorname { k e y }}(\boldsymbol{n e x t}(p))$ $x=y$: we return element(next(p))
$x>y$: we "scan forward"
$x<y$: we "drop down"
- If we try to drop down past the bottom list, we return null
- Example: search for 78

Insertion

* To insert an entry $(\boldsymbol{x}, \boldsymbol{o})$ into a skip list, we use a randomized algorithm:
- We repeatedly toss a coin until we get tails, and we denote with \boldsymbol{i} the number of times the coin came up heads
- If $\boldsymbol{i} \geq \boldsymbol{h}$, we add to the skip list new lists $S_{\boldsymbol{h}+1}, \ldots, S_{i+1}$, each containing only the two special keys
- We search for \boldsymbol{x} in the skip list and find the positions $\boldsymbol{p}_{0}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{i}$ of the items with largest key less than \boldsymbol{x} in each list $\boldsymbol{S}_{0}, \boldsymbol{S}_{1}, \ldots, \boldsymbol{S}_{i}$
- For $j \leftarrow 0, \ldots, i$, we insert item $(\boldsymbol{x}, \boldsymbol{o})$ into list S_{j} after position p_{j}
- Example: insert key 15 , with $\boldsymbol{i}=2$

Deletion

* To remove an entry with key x from a skip list, we proceed as follows:
- We search for \boldsymbol{x} in the skip list and find the positions $\boldsymbol{p}_{0}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{i}$
of the items with key \boldsymbol{x}, where position p_{j} is in list S_{j}
- We remove positions $\boldsymbol{p}_{0}, \boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{\boldsymbol{i}}$ from the lists $\boldsymbol{S}_{0}, \boldsymbol{S}_{1}, \ldots, \boldsymbol{S}_{i}$
- We remove all but one list containing only the two special keys
- Example: remove key 34

Implementation

- We can implement a skip list with quad-nodes
- A quad-node stores:
- entry
- link to the node prev
- link to the node next
- link to the node below
- link to the node above
- Also, we define special keys PLUS_INF and MINUS_INF, and we modify the key comparator to handle them

Space Usage

- The space used by a skip list depends on the random bits used by each invocation of the insertion algorithm
- We use the following two basic probabilistic facts:
Fact 1: The probability of getting i consecutive heads when flipping a coin is $1 / 2^{i}$
Fact 2: If each of \boldsymbol{n} entries is present in a set with probability \boldsymbol{p}, the expected size of the set is $n p$
- Consider a skip list with n entries
- By Fact 1, we insert an entry in list S_{i} with probability $1 / 2^{i}$
- By Fact 2, the expected size of list S_{i} is $n / 2^{i}$
- The expected number of nodes used by the skip list is

$$
\sum_{i=0}^{h} \frac{n}{2^{i}}=n \sum_{i=0}^{h} \frac{1}{2^{i}}<2 n
$$

- Thus, the expected space usage of a skip list with n items is $\boldsymbol{O}(\boldsymbol{n})$

Height

- The running time of the search an insertion algorithms is affected by the height \boldsymbol{h} of the skip list
- We show that with high probability, a skip list with n items has height $\boldsymbol{O}(\log \boldsymbol{n})$
- We use the following additional probabilistic fact: Fact 3: If each of n events has probability p, the probability that at least one event occurs is at most $n \boldsymbol{p}$
- Consider a skip list with n entires
- By Fact 1, we insert an entry in list S_{i} with probability $1 / 2^{i}$
- By Fact 3, the probability that list S_{i} has at least one item is at most $n / 2^{i}$
By picking $i=3 \log n$, we have that the probability that $S_{3 \log n}$ has at least one entry is at most

$$
\boldsymbol{n} / 2^{3 \log n}=\boldsymbol{n} / \boldsymbol{n}^{3}=1 / \boldsymbol{n}^{2}
$$

- Thus a skip list with n entries has height at most $3 \log \boldsymbol{n}$ with probability at least $1-1 / \boldsymbol{n}^{2}$

Search and Update Times

- The search time in a skip list is proportional to
- the number of drop-down steps, plus
- the number of scan-forward steps
- The drop-down steps are bounded by the height of the skip list and thus are $\boldsymbol{O}(\log \boldsymbol{n})$ with high probability
- To analyze the scan-forward steps, we use yet another probabilistic fact:
Fact 4: The expected number of coin tosses required in order to get tails is 2
- When we scan forward in a list, the destination key does not belong to a higher list
- A scan-forward step is associated with a former coin toss that gave tails
- By Fact 4, in each list the expected number of scanforward steps is 2
- Thus, the expected number of scan-forward steps is $\boldsymbol{O}(\log \boldsymbol{n})$
- We conclude that a search in a skip list takes $\boldsymbol{O}(\log \boldsymbol{n})$ expected timeThe analysis of insertion and deletion gives similar results

Summary

- A skip list is a data structure for dictionaries that uses a randomized insertion algorithm
- In a skip list with n entries
- The expected space used is $\boldsymbol{O}(\boldsymbol{n})$
- The expected search insertion and deletion time is $\boldsymbol{O}(\log \boldsymbol{n})$
- Using a more complex probabilistic analysis, one can show that these performance bounds also hold with high probability
- Skip lists are fast and simple to implement in practice

