
Skip Lists 1© 2004 Goodrich, Tamassia

Skip Lists

+∞−∞

S0

S1

S2

S3

+∞−∞ 10 362315

+∞−∞ 15

+∞−∞ 2315

Skip Lists 2© 2004 Goodrich, Tamassia

What is a Skip List
A skip list for a set S of distinct (key, element) items is a series of 
lists S0, S1 , … , Sh such that

Each list Si contains the special keys +∞ and −∞
List S0 contains the keys of S in nondecreasing order 
Each list is a subsequence of the previous one, i.e.,

S0 ⊇ S1 ⊇ … ⊇ Sh
List Sh contains only the two special keys

We show how to use a skip list to implement the dictionary ADT

56 64 78 +∞31 34 44−∞ 12 23 26

+∞−∞

+∞31−∞

64 +∞31 34−∞ 23

S0

S1

S2

S3

Skip Lists 3© 2004 Goodrich, Tamassia

Search
We search for a key x in a a skip list as follows:

We start at the first position of the top list 
At the current position p, we compare x with y ← key(next(p))

x = y: we return element(next(p))
x > y: we “scan forward” 
x < y: we “drop down”

If we try to drop down past the bottom list, we return null
Example: search for 78

+∞−∞

S0

S1

S2

S3

+∞31−∞

64 +∞31 34−∞ 23

56 64 78 +∞31 34 44−∞ 12 23 26

Skip Lists 4© 2004 Goodrich, Tamassia

Randomized Algorithms
A randomized algorithm
performs coin tosses (i.e., 
uses random bits) to control 
its execution
It contains statements of the 
type

b ← random()
if b = 0

do A …
else { b = 1}

do  B … 
Its running time depends on 
the outcomes of the coin 
tosses

We analyze the expected 
running time of a 
randomized algorithm under 
the following assumptions

the coins are unbiased, and 
the coin tosses are 
independent

The worst-case running time 
of a randomized algorithm is 
often large but has very low 
probability (e.g., it occurs 
when all the coin tosses give 
“heads”)
We use a randomized 
algorithm to insert items into 
a skip list



Skip Lists 5© 2004 Goodrich, Tamassia

To insert an entry (x, o) into a skip list, we use a randomized 
algorithm:

We repeatedly toss a coin until we get tails, and we denote with i 
the number of times the coin came up heads
If i ≥ h, we add to the skip list new lists Sh+1, … , Si +1, each 
containing only the two special keys
We search for x in the skip list and find the positions p0, p1 , …, pi 
of the items with largest key less than x in each list S0, S1, … , Si
For j ← 0, …, i, we insert item (x, o) into list Sj after position pj

Example: insert key 15, with i = 2

Insertion

+∞−∞ 10 36

+∞−∞

23

23 +∞−∞

S0

S1

S2

+∞−∞

S0

S1

S2

S3

+∞−∞ 10 362315

+∞−∞ 15

+∞−∞ 2315
p0

p1

p2

Skip Lists 6© 2004 Goodrich, Tamassia

Deletion
To remove an entry with key x from a skip list, we proceed as 
follows:

We search for x in the skip list and find the positions p0, p1 , …, pi 
of the items with key x, where position pj is in list Sj

We remove positions p0, p1 , …, pi from the lists S0, S1, … , Si

We remove all but one list containing only the two special keys

Example: remove key 34

−∞ +∞4512

−∞ +∞

23

23−∞ +∞

S0

S1

S2

−∞ +∞

S0

S1

S2

S3

−∞ +∞4512 23 34

−∞ +∞34

−∞ +∞23 34
p0

p1

p2

Skip Lists 7© 2004 Goodrich, Tamassia

Implementation
We can implement a skip list 
with  quad-nodes
A quad-node stores:

entry
link to the node prev
link to the node next
link to the node below
link to the node above

Also, we define special keys 
PLUS_INF and MINUS_INF, 
and we modify the key 
comparator to handle them  

x

quad-node

Skip Lists 8© 2004 Goodrich, Tamassia

Space Usage
The space used by a skip list 
depends on the random bits 
used by each invocation of the 
insertion algorithm
We use the following two basic 
probabilistic facts:
Fact 1: The probability of getting i

consecutive heads when 
flipping a coin is 1/2i

Fact 2: If each of n entries is 
present in a set with 
probability p, the expected size 
of the set is np

Consider a skip list with n
entries

By Fact 1, we insert an entry 
in list Si with probability 1/2i

By Fact 2, the expected size 
of list Si is n/2i

The expected number of 
nodes used by the skip list is

nnn h

i
i

h

i
i 2

2
1

2 00
<= ∑∑

==

Thus, the expected space 
usage of a skip list with n
items is O(n)



Skip Lists 9© 2004 Goodrich, Tamassia

Height
The running time of the 
search an insertion 
algorithms is affected by the 
height h of the skip list
We show that with high 
probability, a skip list with n
items has height O(log n)
We use the following 
additional probabilistic fact:
Fact 3: If each of n events has 

probability p, the probability 
that at least one event 
occurs is at most np

Consider a skip list with n
entires

By Fact 1, we insert an entry 
in list Si with probability 1/2i

By Fact 3, the probability that 
list Si has at least one item is 
at most n/2i

By picking i = 3log n, we have 
that the probability that S3log n
has at least one entry is
at most

n/23log n = n/n3 = 1/n2

Thus a skip list with n entries 
has height at most 3log n with 
probability at least 1 − 1/n2

Skip Lists 10© 2004 Goodrich, Tamassia

Search and Update Times
The search time in a skip list 
is proportional to

the number of drop-down 
steps, plus
the number of scan-forward 
steps

The drop-down steps are 
bounded by the height of the 
skip list and thus are O(log n) 
with high probability
To analyze the scan-forward 
steps, we use yet another 
probabilistic fact:
Fact 4: The expected number of 

coin tosses required in order 
to get tails is 2

When we scan forward in a 
list, the destination key does 
not belong to a higher list

A scan-forward step is 
associated with a former coin 
toss that gave tails

By Fact 4, in each list the 
expected number of scan-
forward steps is 2
Thus, the expected number of 
scan-forward steps is  O(log n)
We conclude that a search in a 
skip list takes O(log n) 
expected time
The analysis of insertion and 
deletion gives similar results

Skip Lists 11© 2004 Goodrich, Tamassia

Summary

A skip list is a data 
structure for 
dictionaries that uses a 
randomized insertion 
algorithm
In a skip list with n
entries 

The expected space used 
is O(n)
The expected search, 
insertion and deletion 
time is O(log n)

Using a more complex 
probabilistic analysis, 
one can show that 
these performance 
bounds also hold with 
high probability
Skip lists are fast and 
simple to implement in 
practice


