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Vectors and Array Lists
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The Vector ADT (§5.1)
The Vector ADT 
extends the notion of 
array by storing a 
sequence of arbitrary 
objects
An element can be 
accessed, inserted or 
removed by specifying 
its rank (number of 
elements preceding it)
An exception is 
thrown if an incorrect 
rank is specified (e.g., 
a negative rank)

Main vector operations:
object elemAtRank(integer r): 
returns the element at rank r 
without removing it
object replaceAtRank(integer r, 
object o): replace the element at 
rank with o and return the old 
element
insertAtRank(integer r, object o): 
insert a new element o to have 
rank r
object removeAtRank(integer r): 
removes and returns the element 
at rank r

Additional operations size() and 
isEmpty()
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Applications of Vectors

Direct applications
Sorted collection of objects (elementary 
database)

Indirect applications
Auxiliary data structure for algorithms
Component of other data structures
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Array-based Vector
Use an array V of size N
A variable n keeps track of the size of the vector 
(number of elements stored)
Operation elemAtRank(r) is implemented in O(1)
time by returning V[r]

V
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Insertion
In operation insertAtRank(r, o), we need to make 
room for the new element by shifting forward the 
n − r elements V[r], …, V[n − 1]
In the worst case (r = 0), this takes O(n) time
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Deletion
In operation removeAtRank(r), we need to fill the 
hole left by the removed element by shifting 
backward the n − r − 1 elements V[r + 1], …, V[n − 1]
In the worst case (r = 0), this takes O(n) time
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Performance
In the array based implementation of a Vector

The space used by the data structure is O(n)
size, isEmpty, elemAtRank and replaceAtRank run in 
O(1) time
insertAtRank and removeAtRank run in O(n) time

If we use the array in a circular fashion,
insertAtRank(0) and removeAtRank(0) run in 
O(1) time
In an insertAtRank operation, when the array 
is full, instead of throwing an exception, we 
can replace the array with a larger one
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Growable Array-based Vector
In a push operation, when 
the array is full, instead of 
throwing an exception, we 
can replace the array with 
a larger one
How large should the new 
array be?

incremental strategy: 
increase the size by a 
constant c
doubling strategy: double 
the size

Algorithm push(o)
if t = S.length − 1 then

A ← new array of
size …

for i ← 0 to t do
A[i] ← S[i]
S ← A

t ← t + 1
S[t] ← o
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Comparison of the Strategies

We compare the incremental strategy and 
the doubling strategy by analyzing the total 
time T(n) needed to perform a series of n
push operations
We assume that we start with an empty 
stack represented by an array of size 1
We call amortized time of a push operation 
the average time taken by a push over the 
series of operations, i.e.,  T(n)/n
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Incremental Strategy Analysis 

We replace the array k = n/c times
The total time T(n) of a series of n push 
operations is proportional to

n + c + 2c + 3c + 4c + … + kc =
n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2
Since c is a constant, T(n) is O(n + k2), i.e., 
O(n2)
The amortized time of a push operation is O(n)
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Doubling Strategy Analysis
We replace the array k = log2 n 
times
The total time T(n) of a series 
of n push operations is 
proportional to

n + 1 + 2 + 4 + 8 + …+ 2k =
n + 2k + 1 −1 = 2n −1

T(n) is O(n)
The amortized time of a push 
operation is O(1)
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