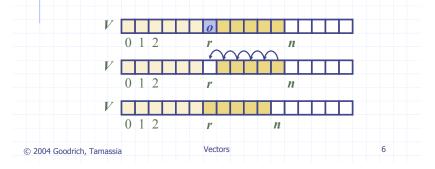

Applications of Vectors Direct applications Sorted collection of objects (elementary database) Indirect applications Auxiliary data structure for algorithms Component of other data structures

Vectors

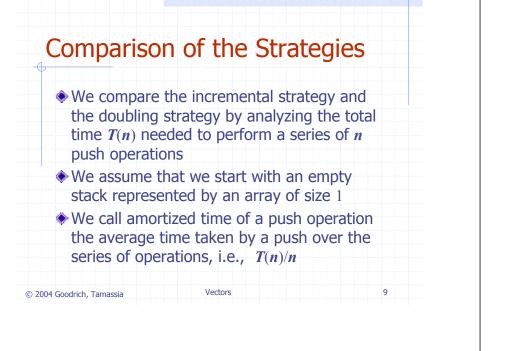
© 2004 Goodrich, Tamassia


3

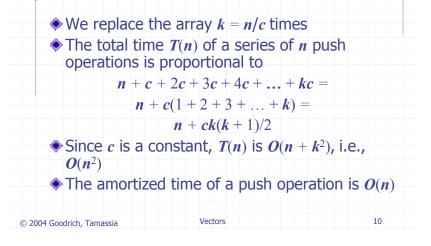
Deletion

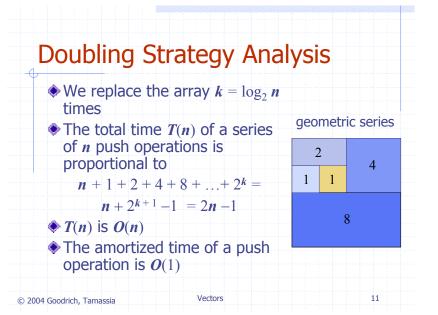
♦ In operation *removeAtRank*(*r*), we need to fill the hole left by the removed element by shifting backward the *n* − *r* − 1 elements *V*[*r* + 1], ..., *V*[*n* − 1]
 ♦ In the worst case (*r* = 0), this takes *O*(*n*) time

Performance


- In the array based implementation of a Vector
 - The space used by the data structure is *O*(*n*)
 - size, isEmpty, elemAtRank and replaceAtRank run in O(1) time
 - insertAtRank and removeAtRank run in O(n) time
- If we use the array in a circular fashion, insertAtRank(0) and removeAtRank(0) run in O(1) time
- In an *insertAtRank* operation, when the array is full, instead of throwing an exception, we can replace the array with a larger one

Vectors


7


Growable Array-based Vector

 In a push operation, when the array is full, instead of throwing an exception, we can replace the array with a larger one How large should the new array be? 	$\begin{array}{c} A \text{ gorthin } past(0) \\ \text{if } t = S.length - 1 \text{ then} \\ A \leftarrow \text{new array of} \\ \text{size } \dots \\ \text{for } i \leftarrow 0 \text{ to } t \text{ do} \end{array}$
 incremental strategy: increase the size by a constant <i>c</i> doubling strategy: double the size 	$t \leftarrow t + 1$ $S[t] \leftarrow o$
© 2004 Goodrich, Tamassia Vectors	8

Incremental Strategy Analysis

