
Vectors 1© 2004 Goodrich, Tamassia

Vectors and Array Lists

Vectors 2© 2004 Goodrich, Tamassia

The Vector ADT (§5.1)
The Vector ADT
extends the notion of
array by storing a
sequence of arbitrary
objects
An element can be
accessed, inserted or
removed by specifying
its rank (number of
elements preceding it)
An exception is
thrown if an incorrect
rank is specified (e.g.,
a negative rank)

Main vector operations:
object elemAtRank(integer r):
returns the element at rank r
without removing it
object replaceAtRank(integer r,
object o): replace the element at
rank with o and return the old
element
insertAtRank(integer r, object o):
insert a new element o to have
rank r
object removeAtRank(integer r):
removes and returns the element
at rank r

Additional operations size() and
isEmpty()

Vectors 3© 2004 Goodrich, Tamassia

Applications of Vectors

Direct applications
Sorted collection of objects (elementary
database)

Indirect applications
Auxiliary data structure for algorithms
Component of other data structures

Vectors 4© 2004 Goodrich, Tamassia

Array-based Vector
Use an array V of size N
A variable n keeps track of the size of the vector
(number of elements stored)
Operation elemAtRank(r) is implemented in O(1)
time by returning V[r]

V
0 1 2 nr

Vectors 5© 2004 Goodrich, Tamassia

Insertion
In operation insertAtRank(r, o), we need to make
room for the new element by shifting forward the
n − r elements V[r], …, V[n − 1]
In the worst case (r = 0), this takes O(n) time

V
0 1 2 nr

V
0 1 2 nr

V
0 1 2 n

o
r

Vectors 6© 2004 Goodrich, Tamassia

Deletion
In operation removeAtRank(r), we need to fill the
hole left by the removed element by shifting
backward the n − r − 1 elements V[r + 1], …, V[n − 1]
In the worst case (r = 0), this takes O(n) time

V
0 1 2 nr

V
0 1 2 n

o
r

V
0 1 2 nr

Vectors 7© 2004 Goodrich, Tamassia

Performance
In the array based implementation of a Vector

The space used by the data structure is O(n)
size, isEmpty, elemAtRank and replaceAtRank run in
O(1) time
insertAtRank and removeAtRank run in O(n) time

If we use the array in a circular fashion,
insertAtRank(0) and removeAtRank(0) run in
O(1) time
In an insertAtRank operation, when the array
is full, instead of throwing an exception, we
can replace the array with a larger one

Vectors 8© 2004 Goodrich, Tamassia

Growable Array-based Vector
In a push operation, when
the array is full, instead of
throwing an exception, we
can replace the array with
a larger one
How large should the new
array be?

incremental strategy:
increase the size by a
constant c
doubling strategy: double
the size

Algorithm push(o)
if t = S.length − 1 then

A ← new array of
size …

for i ← 0 to t do
A[i] ← S[i]
S ← A

t ← t + 1
S[t] ← o

Vectors 9© 2004 Goodrich, Tamassia

Comparison of the Strategies

We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n
push operations
We assume that we start with an empty
stack represented by an array of size 1
We call amortized time of a push operation
the average time taken by a push over the
series of operations, i.e., T(n)/n

Vectors 10© 2004 Goodrich, Tamassia

Incremental Strategy Analysis

We replace the array k = n/c times
The total time T(n) of a series of n push
operations is proportional to

n + c + 2c + 3c + 4c + … + kc =
n + c(1 + 2 + 3 + … + k) =

n + ck(k + 1)/2
Since c is a constant, T(n) is O(n + k2), i.e.,
O(n2)
The amortized time of a push operation is O(n)

Vectors 11© 2004 Goodrich, Tamassia

Doubling Strategy Analysis
We replace the array k = log2 n
times
The total time T(n) of a series
of n push operations is
proportional to

n + 1 + 2 + 4 + 8 + …+ 2k =
n + 2k + 1 −1 = 2n −1

T(n) is O(n)
The amortized time of a push
operation is O(1)

geometric series

1

2

1
4

8

