Analysis of Algorithms

An algorithm is a step- by sep procedure for solving a problem in a finite amount of time.

Running Time (§3.1)

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
- Easier to analyze

- Crucial to applications such as games, finance and robotics

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like System.currentTimeMillis() to get an accurate measure of the actual running time
- Plot the results

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
-Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
-Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Pseudocode (§3.2)

- High evel description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

```
Algorithm arrayMax(A,n)
    Input array }\boldsymbol{A}\mathrm{ of }\boldsymbol{n}\mathrm{ integers
    Output maximum element of }\boldsymbol{A
currentMax}\leftarrowA[0
    for }i\leftarrow1\mathrm{ to }n-1\mathrm{ do
        if A[i]> currentMax then
        currentMax }\leftarrowA[i
return currentMax
```

- Control flow
- if \ldots then \ldots [else \ldots]
- while ... do .
- repeat ... until
- for ... do .
- Indentation replaces braces
- Method declaration

Algorithm method (arg [, arg...]) Input
Output

- Method call var.method (arg [, arg...])
- Return value return expression
- Expressions
\leftarrow Assignment (like = in Java)
= Equality testing (like == in Java)
n^{2} Superscripts and other mathematical formatting allowed

The Random Access Machine (RAM) Model

- A CPU
- An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character
- Memory cells are numbered and accessing any cell in memory takes unit time.

Seven Important Functions (§3.3)

- Seven functions that often appear in algorithm analysis:
- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear $\approx n$
- N-Log-N $\approx n \log n$
- Quadratic $\approx n^{2}$
- Cubic $\approx n^{3}$
- Exponential $\approx 2^{n}$
- In a log log chart, the slope of the line corresponds to the growth rate of the

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model
- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Counting Primitive Operations (§3.4)

- By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

Algorithm arrayMax $(\boldsymbol{A}, \boldsymbol{n})$	\# operations
currentMax $\leftarrow \boldsymbol{A}[0]$	2
for $i \leftarrow 1$ to $n-1$ do	$2 \boldsymbol{n}$
if $\boldsymbol{A}[i]>$ currentMax then	$2(\boldsymbol{n}-1)$
currentMax $\leftarrow A[\boldsymbol{i}]$	$2(\boldsymbol{n}-1)$
$\{$ increment counter $\boldsymbol{i}\}$	$2(\boldsymbol{n}-1)$
return currentMax	1
	Total $8 \boldsymbol{n}-2$

Estimating Running Time

- Algorithm arrayMax executes $8 \boldsymbol{n}-2$ primitive operations in the worst case. Define:
$a=$ Time taken by the fastest primitive operation
$b=$ Time taken by the slowest primitive operation
- Let $T(n)$ be worst-case time of arrayMax. Then

$$
\boldsymbol{a}(8 \boldsymbol{n}-2) \leq \boldsymbol{T}(\boldsymbol{n}) \leq \boldsymbol{b}(8 \boldsymbol{n}-2)
$$

- Hence, the running time $T(n)$ is bounded by two linear functions

Growth Rate of Running Time

-Changing the hardware/ software environment

- Affects $T(n)$ by a constant factor, but
- Does not alter the growth rate of $\boldsymbol{T}(\boldsymbol{n})$
- The linear growth rate of the running time $\boldsymbol{T}(\boldsymbol{n})$ is an intrinsic property of algorithm arrayMax

Constant Factors

- The growth rate is not affected by
- constant factors or
- lower-order terms
- Examples
- $10^{2} \boldsymbol{n}+10^{5}$ is a linear function
- $10^{5} \boldsymbol{n}^{2}+10^{8} \boldsymbol{n}$ is a quadratic function

Analysis of Algorithms

Big-Oh Notation (§3.4)

- Given functions $\boldsymbol{f}(\boldsymbol{n})$ and $\boldsymbol{g}(\boldsymbol{n})$, we say that $\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$ if there are positive constants c and n_{0} such that $f(n) \leq \boldsymbol{c g}(\boldsymbol{n})$ for $\boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}}$
- Example: $2 \boldsymbol{n}+10$ is $\boldsymbol{O}(\boldsymbol{n})$
- $2 \boldsymbol{n}+10 \leq \boldsymbol{c} \boldsymbol{n}$
- $(c-2) n \geq 10$
- $n \geq 10 /(c-2)$

- Pick $c=3$ and $n_{0}=10$

Big-Oh Example

- Example: the function n^{2} is not $\boldsymbol{O}(\boldsymbol{n})$
- $n^{2} \leq c n$
- $\boldsymbol{n} \leq \boldsymbol{c}$
- The above inequality cannot be satisfied since c must be a constant

More Big-Oh Examples

-7n-2

Big-Oh and Growth Rate

$7 \mathrm{n}-2$ is $\mathrm{O}(\mathrm{n})$

need $\mathrm{c}>0$ and $\mathrm{n}_{0} \geq 1$ such that $7 \mathrm{n}-2 \leq \mathrm{c} \bullet \mathrm{n}$ for $\mathrm{n} \geq \mathrm{n}_{0}$
this is true for $\mathrm{c}=7$ and $\mathrm{n}_{0}=1$

- $3 n^{3}+20 n^{2}+5$
$3 n^{3}+20 n^{2}+5$ is $O\left(n^{3}\right)$
need $c>0$ and $n_{0} \geq 1$ such that $3 n^{3}+20 n^{2}+5 \leq c \bullet n^{3}$ for $n \geq n_{0}$ this is true for $\mathrm{c}=4$ and $\mathrm{n}_{0}=21$
- $3 \log n+5$
$3 \log n+5$ is $O(\log n)$
need $c>0$ and $n_{0} \geq 1$ such that $3 \log n+5 \leq c \bullet \log n$ for $n \geq n_{0}$
this is true for $\mathrm{c}=8$ and $\mathrm{n}_{0}=2$
- The big Onnotation gives an upper bound on the growth rate of a function
- The statement " $f(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n})$)" means that the growth rate of $f(\boldsymbol{n})$ is no more than the growth rate of $\boldsymbol{g}(\boldsymbol{n})$
- We can use the big Ohnotation to rank functions according to their growth rate

	$\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$	$\boldsymbol{g}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{f}(\boldsymbol{n}))$
$\boldsymbol{g}(\boldsymbol{n})$ grows more	Yes	No
$\boldsymbol{f}(\boldsymbol{n})$ grows more	No	Yes
Same growth	Yes	Yes

Big-Oh Rules

- If is $f(n)$ a polynomial of degree d, then $f(n)$ is $\boldsymbol{O}\left(\boldsymbol{n}^{d}\right)$, i.e.,

1. Drop lowef order terms
2. Drop constant factors

- Use the smallest possible class of functions
- Say " $2 \boldsymbol{n}$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $2 \boldsymbol{n}$ is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ "
- Use the simplest expression of the class
- Say " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(3 \boldsymbol{n})$ "

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big Oh notation
- To perform the asymptotic analysis
- We find the worst-case number of primitive operations executed as a function of the input size
- We express this function with big-Oh notation
- Example:
- We determine that algorithm arrayMax executes at most $8 \boldsymbol{n}-2$ primitive operations
- We say that algorithm arrayMax "runs in $\boldsymbol{O}(\boldsymbol{n})$ time"
- Since constant factors and lowef oder terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- The \boldsymbol{i} th prefix average of an array \boldsymbol{X} is average of the first $(\boldsymbol{i}+1)$ elements of \boldsymbol{X} : $A[i]=(X[0]+X[1]+\ldots+X[i])(i+1)$
- Computing the array A of prefix averages of another array X has applications to financial analysis

Prefix Averages (Quadratic)

- The following algorithm computes prefix averages in quadratic time by applying the definition

```
Algorithm prefixAverages \(1(X, n)\)
    Input array \(\boldsymbol{X}\) of \(\boldsymbol{n}\) integers
    Output array \(\boldsymbol{A}\) of prefix averages of \(\boldsymbol{X}\) \#operations
    \(\boldsymbol{A} \leftarrow\) new array of \(\boldsymbol{n}\) integers \(\boldsymbol{n}\)
    for \(i \leftarrow 0\) to \(n-1\) do \(n\)
        \(s \leftarrow X[0]\)
    \(1+2+\ldots+(n-1)\)
    \(1+2+\ldots+(n-1)\)
        \(s \leftarrow s+X[j]\)
    \(A[i] \leftarrow s /(i+1)\)
    return \(A\)
```


Arithmetic Progression

- The running time of prefixAverages 1 is $\boldsymbol{O}(1+2+\ldots+\boldsymbol{n})$
- The sum of the first n integers is $\boldsymbol{n}(\boldsymbol{n}+1) / 2$
- There is a simple visual proof of this fact
- Thus, algorithm prefixAverages1 runs in $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ time

Prefix Averages (Linear)

- The following algorithm computes prefix averages in linear time by keeping a running sum

```
```

Algorithm prefixAverages $2(X, n)$

```
```

Algorithm prefixAverages $2(X, n)$
Input array \boldsymbol{X} of \boldsymbol{n} integers
Input array \boldsymbol{X} of \boldsymbol{n} integers
Output array \boldsymbol{A} of prefix averages of $\boldsymbol{X} \quad$ \#operations
Output array \boldsymbol{A} of prefix averages of $\boldsymbol{X} \quad$ \#operations
$\boldsymbol{A} \leftarrow$ new array of \boldsymbol{n} integers $\quad \boldsymbol{n}$
$\boldsymbol{A} \leftarrow$ new array of \boldsymbol{n} integers $\quad \boldsymbol{n}$
$s \leftarrow 0 \quad 1$
$s \leftarrow 0 \quad 1$
for $i \leftarrow 0$ to $n-1$ do n
for $i \leftarrow 0$ to $n-1$ do n
$s \leftarrow s+X[i] \quad n$
$s \leftarrow s+X[i] \quad n$
$A[i] \leftarrow s /(i+1) \quad n$
$A[i] \leftarrow s /(i+1) \quad n$
return A
return A
return A 1

```
```

 return \(A\) 1
    ```
```

- Algorithm prefixAverages 2 runs in $\boldsymbol{O}(\boldsymbol{n})$ time

Math you need to Review

- Summations
- Logarithms and Exponents
(properties of logarithms:
$\log _{b}(x y)=\log _{b} x+\log _{b} y$
$\log _{b}(x / y)=\log _{b} x-\log _{b} y$
$\log _{b} x a=a \log _{b} x$
$\log _{b} a=\log _{x} a / \log _{x} b$
- properties of exponentials:
$a^{(b+c)}=a^{b} a^{c}$
- Proof techniques
- Basic probability
$a^{b} / a^{c}=a^{(b-c)}$
$\mathrm{b}=\mathrm{a} \log _{\mathrm{a}} \mathrm{b}$
$b^{c}=a c^{*} \log _{a} b$
and an integer constant $\mathrm{n}_{0} \geq 1$ such that $f(n) \geq c \bullet g(n)$ for $n \geq n_{0}$
- big-Theta
- $f(n)$ is $\Theta(g(n))$ if there are constants $c^{\prime}>0$ and $c^{\prime \prime}$ >0 and an integer constant $\mathrm{n}_{0} \geq 1$ such that $c^{\prime} \bullet g(n) \leq f(n) \leq c^{\prime \prime} \bullet g(n)$ for $n \geq n_{0}$

Intuition for Asymptotic Notation

Big-Oh

- $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$

big-Omega

- $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if $\mathrm{f}(\mathrm{n})$ is asymptotically greater than or equal to $\mathrm{g}(\mathrm{n})$

big-Theta

- $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$

Relatives of Big-Oh

- big-Omega

- $f(n)$ is $\Omega(g(n))$ if there is a constant $\mathrm{c}>0$

Example Uses of the Relatives of Big-Oh

- $\mathbf{5} \boldsymbol{n}^{2}$ is $\Omega\left(n^{2}\right)$

$f(n)$ is $\Omega(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $f(n) \geq c \bullet g(n)$ for $n \geq n_{0}$ let $c=5$ and $n_{0}=1$
- $\mathbf{5} \boldsymbol{n}^{2}$ is $\Omega(\boldsymbol{n})$
$f(n)$ is $\Omega(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $\mathrm{f}(n) \geq c \bullet g(n)$ for $n \geq n_{0}$
let $c=1$ and $n_{0}=1$
- $5 \boldsymbol{n}^{2}$ is $\Theta\left(n^{2}\right)$
$f(n)$ is $\Theta(g(n))$ if it is $\Omega\left(n^{2}\right)$ and $O\left(n^{2}\right)$. We have already seen the former, for the latter recall that $f(n)$ is $O(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $\mathrm{f}(n) \leq c \bullet g(n)$ for $n \geq n_{0}$
Let $c=5$ and $n_{0}=1$

