

Analysis of Algorithms

Theoretical Analysis

© 2004 Goodrich, Tamassia

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Analysis of Algorithms

Pseudocode (§3.2)

 High evel description of an algorithm 	Example: find max element of an array
 More structured than English prose Less detailed than a program Preferred notation for describing algorithms Hides program design issues 	Algorithm arrayMax(A, n)Input array A of n integersOutput maximum element of AcurrentMax $\leftarrow A[0]$ for $i \leftarrow 1$ to $n - 1$ doif $A[i] > currentMax$ thencurrentMax $\leftarrow A[i]$ return currentMax
© 2004 Goodrich, Tamassia Analysis	s of Algorithms 6

Counting Primitive Operations (§3.4)

 By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

Constant Factors

More Big-Oh Examples

▼ 7n-2		
7n-2 is O(n)		
need c > 0 and $n_0 \ge$	≥ 1 such that 7n-2 $\le c \bullet n$ for n	$\geq n_0$
this is true for $c = 7$	7 and $n_0 = 1$	
■ 3n ³ + 20n ² +	5	
3n ³ + 20n ² + 5 is O)(n ³)	
need c > 0 and $n_0 \ge$	≥ 1 such that $3n^3 + 20n^2 + 5 \le 1$	$\leq \mathbf{c} \bullet \mathbf{n}^3$ for $\mathbf{n} \geq \mathbf{n}_0$
this is true for $c = 4$	$1 \text{ and } n_0 = 21$	
■ 3 log n + 5		
3 log n + 5 is O(log	g n)	
need c > 0 and n_0	≥ 1 such that 3 log n + 5 \le c•	log n for $n \ge n_0$
this is true for c =	8 and $n_0 = 2$	
© 2004 Goodrich, Tamassia	Analysis of Algorithms	17

Big-Oh and Growth Rate

- The big Onnotation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big Onnotation to rank functions according to their growth rate

	<i>f</i> (<i>n</i>) is <i>O</i> (<i>g</i> (<i>n</i>))	<i>g</i> (<i>n</i>) is <i>O</i> (<i>f</i> (<i>n</i>))
g(n) grows more	Yes	No
<i>f</i> (<i>n</i>) grows more	No	Yes
Same growth	Yes	Yes
Coodrich, Tamassia	Analysis of Algorithms	

Asymptotic Algorithm Analysis

executed as a function of the input size

We express this function with big-Oh notation

Since constant factors and lower order terms are eventually dropped anyhow, we can disregard them

the running time in big Oh notation

To perform the asymptotic analysis

8n - 2 primitive operations

when counting primitive operations

The asymptotic analysis of an algorithm determines

We find the worst-case number of primitive operations

We determine that algorithm arrayMax executes at most

• We say that algorithm *arrayMax* "runs in *O*(*n*) time"

Big-Oh Rules

19

- If is f(n) a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - 1. Drop lower order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is O(n²)"
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Example:

Prefix Averages (Quadratic)

 The following algorithm computes prefix averages in quadratic time by applying the definition

Output array 4 of prefix aver	ages of V #operations
Output allay A of plefix aver	ages of A #operations
$A \leftarrow$ new array of <i>n</i> integers	n
for $i \leftarrow 0$ to $n - 1$ do	n
$s \leftarrow X[0]$	n
for $j \leftarrow 1$ to i do	$1 + 2 + \ldots + (n - 1)$
$s \leftarrow s + X[j]$	$1 + 2 + \ldots + (n - 1)$
$A[i] \leftarrow s / (i+1)$	n
return A	1

refix Averages (Linear)			
The following algorithm computes prefix linear time by keeping a running sum	averages in		
Algorithm <i>prefixAverages2(X, n)</i>			
Input array X of n integers Output array A of prefix averages of X	#operations		
$A \leftarrow$ new array of <i>n</i> integers			
$s \leftarrow 0$	1		
for $i \leftarrow 0$ to $n - 1$ do	n		
$s \leftarrow s + X[i]$	n		
$A[i] \leftarrow s / (i+1)$	n		
return A	1		
Algorithm <i>prefixAverages2</i> runs in $O(n)$ tin	ne		
	2/		

Example l Relatives	Jses of the of Big-Oh	
• $5n^2$ is $\Omega(n^2)$		
$f(n) \text{ is } \Omega(g(n)) \text{ if th}$ such that $f(n) \ge c$ let $c = 5$ and $n_0 = 1$	ere is a constant $c > 0$ and an integreg(n) for $n \ge n_0$	ger constant $n_0 \ge 1$
• $5n^2$ is $\Omega(n)$		
$f(n) \text{ is } \Omega(g(n)) \text{ if th}$ such that $f(n) \ge c$ let $c = 1$ and $n_0 = 1$	ere is a constant $c > 0$ and an integreg(n) for $n \ge n_0$	ger constant $n_0 \ge 1$
• $5n^2$ is $\Theta(n^2)$		
$f(n)$ is $\Theta(g(n))$ if it for the latter reca integer constant	is $\Omega(n^2)$ and $O(n^2)$. We have alread all that $f(n)$ is $O(g(n))$ if there is a c $n_0 \ge 1$ such that $f(n) \le c \cdot g(n)$ for n	dy seen the former, constant $c > 0$ and an $\ge n_0$
Let $c = 5$ and $n_0 =$	1	
2004 Goodrich, Tamassia	Analysis of Algorithms	28