

A Character Equation	erizing	
optimal subpro multiply is at.	mal has to be defined in ter- blems, depending on where all possible places for that s a $d_i \times d_{i+1}$ dimensional matrix. rizing equation for $N_{i,j}$ is the follo	e the final final multiply:
$N_{i,j} = \min_{i \le k}$	$ \inf_{$	$\{t_{k+1}d_{j+1}\}$
Note that subproblems	roblems are not independer overlap.	nt- the
© 2004 Goodrich, Tamassia	Dynamic Programming	8

A Dynamic Programming Algorithm

overlap, we don't	Algorithm <i>matrixChain(S</i>):
use recursion.	Input: sequence <i>S</i> of <i>n</i> matrices to be multiplied
 Instead, we construct optimal 	Output: number of operations in an optimal paranethization of <i>S</i>
subproblems	for $i \leftarrow 1$ to $n-1$ do
"bottom-up."	$N_{i,i} \leftarrow \theta$
N _i 's are easy, so	for $b \leftarrow 1$ to <i>n-1</i> do
start with them	for $i \leftarrow 0$ to <i>n-b-1</i> do
Then do length	$j \leftarrow i + b$
2,3, subproblems,	$N_{ij} \leftarrow + infinity$
and so on.	for $k \leftarrow i$ to <i>j</i> -1 do
Running time: O(n ³)	$N_{i,j} \leftarrow \min\{N_{i,j}, N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}\}$
2004 Goodrich, Tamassia	Dynamic Programming 9

A Dynamic Programming Algorithm Visualization

The bottom-up	$r = r_{i}$	nir	ņ{/	$V_{i,k}$	+	N_k	+1, j	, +	$d_i d$	d_{k+}	d_j	+1}	
construction fills in the N array by diagonals	Ν		1					j			n-1		answer
 N_{i,j} gets values from pervious entries in i-th 	01												
row and j-th column	i												
 Filling in each entry in the N table takes O(n) time. 													
Total run time: O(n ³)													
 Getting actual parenthesization can be done by remembering "k" for each N entry 	n-1												
© 2004 Goodrich, Tamassia	Dyr	nami	ic Pr	ogr	amn	ning							10

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
 - Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, l, m, and so on.
 - Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
 - Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom up).

Subsequences (§ 11.5.1)

A **subsequence** of a character string $x_0x_1x_2...x_{n-1}$ is a string of the form

- $x_{i_1}x_{i_2}...x_{i_k}$, where $i_j < i_{j+1}$.
- Not the same as substring!
- Example String: ABCDEFGHIJK
 - Subsequence: ACEGJIK
 - Subsequence: DFGHK
 - Not subsequence: DAGH

11

