Dynamic Programming

Matrix Chain-Products (not in book)

- Dynamic Programming is a general algorithm design paradigm.
- Rather than give the general structure, let us first give a motivating example:
- Matrix Chain-Products
- Review: Matrix Multiplication.
- $C=A^{*} B$
- A is $d \times e$ and B is $e \times f$
$C[i, j]=\sum_{k=0}^{e-1} A[i, k] * B[k, j]$
- O(def) time

Matrix Chain-Products

- Matrix Chain-Product:
- Compute $A=A_{0} * A_{1} * \ldots * A_{n-1}$
- A_{i} is $d_{i} \times d_{i+1}$
- Problem: How to parenthesize?
- Example
- B is 3×100
- C is 100×5
- D is 5×5
- (B*C)*D takes $1500+75=1575$ ops
- $B^{*}(C * D)$ takes $1500+2500=4000$ ops

A Greedy Approach

- Idea \#1: repeatedly select the product that uses (up) the most operations.
- Counter-example:
- A is 10×5
- B is 5×10
- C is 10×5
- D is 5×10
- Greedy idea \#1 gives (A*B)*(C*D), which takes $500+1000+500=2000$ ops
- $A *((B * C) * D)$ takes $500+250+250=1000$ ops

Another Greedy Approach

- Idea \#2: repeatedly select the product that uses the fewest operations.
- Counter-example:
- A is 101×11
- B is 11×9
- C is 9×100
- D is 100×99
- Greedy idea \#2 gives $A^{*}\left(\left(B^{*} C\right) * D\right)$), which takes $109989+9900+108900=228789$ ops
- (A*B)*(C*D) takes 9999+89991+89100=189090 ops
- The greedy approach is not giving us the optimal value.
© 2004 Goodrich, Tamassia

A "Recursive" Approach

- Define subproblems:
- Find the best parenthesization of $A_{i}{ }^{*} A_{i+1} * \ldots * A_{j}$.
- Let $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ denote the number of operations done by this subproblem.
- The optimal solution for the whole problem is $N_{0, n-1}$.
- Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems
- There has to be a final multiplication (root of the expression tree) for the optimal solution.
- Say, the final multiply is at index $\mathrm{i}:\left(\mathrm{A}_{0}{ }^{*} \ldots * \mathrm{~A}_{\mathrm{i}}\right) *\left(\mathrm{~A}_{\mathrm{i}+1}{ }^{*} \ldots{ }^{*} \mathrm{~A}_{\mathrm{n}-1}\right)$.
- Then the optimal solution $N_{0, n-1}$ is the sum of two optimal subproblems, $N_{0, i}$ and $N_{i+1, n-1}$ plus the time for the last multiply.
- If the global optimum did not have these optimal subproblems, we could define an even better "optimal" solution.

A Characterizing Equation

- The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiply is at.
- Let us consider all possible places for that final multiply:
- Recall that A_{i} is a $\mathrm{d}_{\mathrm{i}} \times \mathrm{d}_{\mathrm{i}+1}$ dimensional matrix.
- So, a characterizing equation for $\mathrm{N}_{\mathrm{i}, \mathrm{j}}$ is the following:

$$
N_{i, j}=\min _{i \leq k<j}\left\{N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}
$$

- Note that subproblems are not independent - the subproblems overlap.

A Dynamic Programming Algorithm

Algorithm matrixChain(S):
Input: sequence \boldsymbol{S} of \boldsymbol{n} matrices to be multiplied
Output: number of operations in an optimal
paranethization of S
for $i \leftarrow 1$ to $n-1$ do
$N_{i, i} \leftarrow 0$
for $b \leftarrow 1$ to $n-1$ do
for $i \leftarrow 0$ to $n-b-1$ do
$j \leftarrow i+b$
$N_{i, j} \leftarrow+$ infinity
for $k \leftarrow \mathrm{i}$ to $\boldsymbol{j}-1$ do
$N_{i, j} \leftarrow \min \left\{N_{i, j}, N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}$

A Dynamic Programming Algorithm Visualization

- The bottom-up

$$
N_{i, j}=\min _{i \leq k<j}\left\{N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}
$$ construction fills in the N array by diagonals

- $N_{i, j}$ gets values from pervious entries in i-th row and j-th column
- Filling in each entry in the N table takes $\mathrm{O}(\mathrm{n})$ time.
- Total run time: $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Getting actual parenthesization can be done by remembering " k " for each N entry

The General Dynamic Programming Technique

* Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
- Simple subproblems: the subproblems can be defined in terms of a few variables, such as $\mathrm{j}, \mathrm{k}, \mathrm{l}$, m , and so on.
- Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
- Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom up).

Subsequences (§ 11.5.1)

-A subsequence of a character string $x_{0} x_{1} x_{2} \ldots x_{n-1}$ is a string of the form $\mathrm{x}_{\mathrm{i} 1} \mathrm{X}_{\mathrm{i}_{2}} \ldots \mathrm{X}_{\mathrm{i} k}$ where $\mathrm{i}_{\mathrm{j}}<\mathrm{i}_{\mathrm{j}+1}$.

- Not the same as substring!
- Example String: ABCDEFGHIJK
- Subsequence: ACEGJIK
- Subsequence: DFGHK
- Not subsequence: DAGH

The Longest Common Subsequence (LCS) Problem

*Given two strings X and Y , the longest common subsequence (LCS) problem is to find a longest subsequence common to both X and Y

- Has applications to DNA similarity testing (alphabet is $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$)
- Example: ABCDEFG and XZACKDFWGH have ACDFG as a longest common subsequence

A Poor Approach to the LCS Problem

- A Brute-force solution:
- Enumerate all subsequences of X
- Test which ones are also subsequences of Y
- Pick the longest one.
-Analysis:
- If X is of length n, then it has 2^{n} subsequences
- This is an exponential-time algorithm!

A Dynamic-Programming Approach to the LCS Problem

- Define $L[i, j]$ to be the length of the longest common subsequence of $X[0 . . i]$ and $Y[0 . . j]$.
- Allow for -1 as an index, so $L[-1, k]=0$ and $L[k,-1]=0$, to indicate that the null part of X or Y has no match with the other.
- Then we can define $L[i, j]$ in the general case as follows:

1. If $x i=y j$, then $L[i, j]=L[i-1, j-1]+1$ (we can add this match)
2. If $x i \neq y j$, then $L[i, j]=\max \{L[i-1, j], L[i, j-1]\}$ (we have no match here)

An LCS Algorithm

Algorithm $\operatorname{LCS}(X, Y)$:
Input: Strings X and Y with n and m elements, respectively
Output: For $i=0, \ldots, n-1, j=0, \ldots, m-1$, the length $\angle[i, j]$ of a longest string that is a subsequence of both the string $x[0 \ldots i]=x_{0} x_{1} x_{2} \ldots x_{i}$ and the string $Y[0 . . j]=y_{0} y_{1} y_{2} \ldots y_{j}$
for $i=1$ to $n-1$ do
$L[i,-1]=0$
for $j=0$ to $m-1$ do $L[-1, j]=0$
for $i=0$ to $n-1$ do
for $j=0$ to $m-1$ do
if $x_{i}=y_{j}$ then
else
return array L

Visualizing the LCS Algorithm

\boldsymbol{L}	-1	0	1	2	3	4	5	6	7	8	9	10	11
-1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1	1	1	1	1	1	1
1	0	0	1	1	2	2	2	2	2	2	2	2	2
2	0	0	1	1	2	2	2	3	3	3	3	3	3
3	0	1	1	1	2	2	2	3	3	3	3	3	3
4	0	1	1	1	2	2	2	3	3	3	3	3	3
5	0	1	1	1	2	2	2	3	4	4	4	4	4
6	0	1	1	2	2	3	3	3	4	4	5	5	5
7	0	1	1	2	2	3	4	4	4	4	5	5	6
8	0	1	1	2	3	3	4	5	5	5	5	5	6
9	0	1	1	2	3	4	4	5	5	5	6	6	6

01234567891011 $Y=$ CGATAATTGAGA
$X=G T T C C T A A T A$
0123456789

Analysis of LCS Algorithm

- We have two nested loops
- The outer one iterates n times
- The inner one iterates m times
- A constant amount of work is done inside each iteration of the inner loop
- Thus, the total running time is $\mathrm{O}(\mathrm{nm})$
- Answer is contained in L[n,m] (and the subsequence can be recovered from the L table).

