Using Recursion

Recall the Recursion Pattern (§ 2.5)

- Recursion: when a method calls itself
- Classic example- the factorial function:
- $n!=1 \cdot 2 \cdot 3 \cdot \cdots \cdot(n-1) \cdot n$
- Recursive definition:

$$
f(n)=\left\{\begin{array}{cc}
1 & \text { if } n=0 \\
n \cdot f(n-1) & \text { else }
\end{array}\right.
$$

- As a Java method:
// recursive factorial function
public static int recursiveFactorial(int n) \{
if ($\mathrm{n}==0$) return 1; // basis case
else return n * recursiveFactorial(n-1); // recursive case \}
© 2004 Goodrich, Tamassia
Using Recursion

Linear Recursion (§ 4.1.1)

- Test for base cases.
- Begin by testing for a set of base cases (there should be at least one).
- Every possible chain of recursive calls must eventually reach a base case, and the handling of each base case should not use recursion.

- Recur once.

- Perform a single recursive call. (This recursive step may involve a test that decides which of several possible recursive calls to make, but it should ultimately choose to make just one of these calls each time we perform this step.)
- Define each possible recursive call so that it makes progress towards a base case.

Reversing an Array

Algorithm ReverseArray (A, i, j) :
Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at index i and ending at j

if $i<j$ then

Swap $A[i]$ and $A[j]$
ReverseArray $(A, i+1, j-1)$

return

Computing Powers

- The power function, $\mathrm{p}(\mathrm{x}, \mathrm{n})=\mathrm{x}^{\mathrm{n}}$, can be defined recursively:

$$
p(x, n)=\left\{\begin{array}{cc}
1 & \text { if } n=0 \\
x \cdot p(x, n-1) & \text { else }
\end{array}\right.
$$

- This leads to an power function that runs in $\mathrm{O}(\mathrm{n})$ time (for we make n recursive calls).
* We can do better than this, however.

Defining Arguments for Recursion

- In creating recursive methods, it is important to define the methods in ways that facilitate recursion.
- This sometimes requires we define additional paramaters that are passed to the method.
- For example, we defined the array reversal method as ReverseArray (A, i, j), not ReverseArray (A).

Recursive Squaring

* We can derive a more efficient linearly recursive algorithm by using repeated squaring:

$$
p(x, n)=\left\{\begin{array}{cc}
1 & \text { if } x=0 \\
x \cdot p(x,(n-1) / 2)^{2} & \text { if } x>0 \text { is odd } \\
p(x, n / 2)^{2} & \text { if } x>0 \text { is even }
\end{array}\right.
$$

* For example,
$2^{4}=2^{(4 / 2) 2}=\left(2^{4 / 2}\right)^{2}=\left(2^{2}\right)^{2}=4^{2}=16$
$2^{5}=2^{1+(4 / 2) 2}=2\left(2^{4 / 2}\right)^{2}=2\left(2^{2}\right)^{2}=2\left(4^{2}\right)=32$
$2^{6}=2^{(6 / 2) 2}=\left(2^{6 / 2}\right)^{2}=\left(2^{3}\right)^{2}=8^{2}=64$
$2^{7}=2^{1+(6 / 2) 2}=2\left(2^{6 / 2}\right)^{2}=2\left(2^{3}\right)^{2}=2\left(8^{2}\right)=128$.

A Recursive Squaring Method

```
```

Algorithm $\operatorname{Power}(x, n)$:

```
```

Algorithm $\operatorname{Power}(x, n)$:
Input: A number x and integer $n=0$
Input: A number x and integer $n=0$
Output: The value x^{n}
Output: The value x^{n}
if $n=0$ then
if $n=0$ then
return 1
return 1
if n is odd then
if n is odd then
$y=\operatorname{Power}(x,(n-1) / 2)$
$y=\operatorname{Power}(x,(n-1) / 2)$
return $x \cdot y$ ' y
return $x \cdot y$ ' y
else
else
$y=\operatorname{Power}(x, n / 2)$
$y=\operatorname{Power}(x, n / 2)$
return y • y

```
```

 return \(y\) • \(y\)
    ```
```


Analyzing the Recursive Squaring Method

Algorithm $\operatorname{Power}(x, n)$:
Input: A number x and
integer $n=0$
Output: The value x^{n}
if $n=0$ then
return 1
Each time we make a
ecursive call we halve the value of n; hence, we make $\log n$ recursive calls. That
if n is odd then
$y=\operatorname{Power}(x,(n-1) / 2)$
return $x \cdot y$ ' y
else
$y=\operatorname{Power}(x, n / 2)$
return y ' y
is this method runs in
$O(\log n)$ time.
It is important that we used a variable twice here rather than calling the method twice.

Tail Recursion

- Tail recursion occurs when a linearly recursive method makes its recursive call as its last step.
- The array reversal method is an example.
- Such methods can be easily converted to nof recursive methods (which saves on some resources).
- Example:

Algorithm IterativeReverseArray (A, i, j) :
Input: An array A and nonnegative integer indices i and j
Output: The reversal of the elements in A starting at
index i and ending at j
while $i<j$ do
Swap $A[i]$ and $A[j]$
$i=i+1$
$j=j-1$
return

Binary Recursion (§ 4.1.2)

- Binary recursion occurs whenever there are two recursive calls for each non-base case.
- Example: the DrawTicks method for drawing ticks on an English ruler.

A Binary Recursive Method for Drawing Ticks

```
I/| draw a tick with no label 
// draw one tick 
    for(int i=0; i < tickLength; i++)
    System.out.print("-")
    if}\begin{array}{l}{\mathrm{ if (tickL_bol >= 0) System.out.print(" " + tickLabel);}}\\{\mathrm{ System.out.print("In");}}
    }ystem.out.print("ln"); Note the two
} {ublic static void drawTicks(int tickLength) { // draw ticks of given length_ recursive calls
    if (tickLength > 0) {
        drawTicks(tickLength- 1);
        lu
    }
public static void drawRuler(int nlnches, int majorLength) { // draw ruler
    drawOneTick(majorLength, 0); // draw tick 0 and its label
    for(int i=1; i <= nlnches; i++)
        drawTicks(majorLength- 1); // draw ticks for this inch
        drawOneTick(majorLength, i); // draw tick i and its label
    }
```


Computing Fibanacci Numbers

- Fibonacci numbers are defined recursively:

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{i}=F_{i-1}+F_{i-2} \quad \text { for } i>1 .
\end{aligned}
$$

- As a recursive algorithm (first attempt):

Algorithm BinaryFib (k) :
Input: Nonnegative integer k
Output: The k th Fibonacci number F_{k}
if $k=1$ then
return k
else
return $\operatorname{BinaryFib}(k-1)+\operatorname{BinaryFib}(k-2)$

Another Binary Recusive Method

- Problem: add all the numbers in an integer array A: Algorithm BinarySum (A, i, n) :

Input: An array A and integers i and n
Output: The sum of the n integers in A starting at index i if $n=1$ then
return $A[i]$
return BinarySum $(A, i, n / 2)+\operatorname{BinarySum}(A, i+n / 2, n / 2)$

- Example trace:

Analyzing the Binary Recursion Fibonacci Algorithm

Let n_{k} denote number of recursive calls made by BinaryFib(k). Then

- $n_{0}=1$
- $n_{1}=1$
- $n_{2}=n_{1}+n_{0}+1=1+1+1=3$
- $n_{3}=n_{2}+n_{1}+1=3+1+1=5$
- $n_{4}=n_{3}+n_{2}+1=5+3+1=9$
- $n_{5}=n_{4}+n_{3}+1=9+5+1=15$
- $n_{6}=n_{5}+n_{4}+1=15+9+1=25$
- $n_{7}=n_{6}+n_{5}+1=25+15+1=41$
- $n_{8}=n_{7}+n_{6}+1=41+25+1=67$.
- Note that the value at least doubles for every other value of n_{k}. That is, $n_{k}>2^{k / 2}$. It is exponential!

A Better Fibonacci Algorithm

- Use linear recursion instead:

Algorithm LinearFibonacci (k) :
Input: A nonnegative integer k
Output: Pair of Fibonacci numbers $\left(F_{k}, F_{k-1}\right)$
if $k=1$ then
return ($k, 0$)
else
$(i, j)=$ LinearFibonacci $(k-1)$ return $(i+j, i)$

- Runs in $O(k)$ time.

Algorithm for Multiple Recursion

Algorithm PuzzleSolve(k,S,U):

Input: An integer k, sequence S, and set U (the universe of elements to test)
Output: An enumeration of all k-length extensions to S using elements in U without repetitions
for alle in U do
Remove e from $U \quad\{e$ is now being used $\}$
Add e to the end of S
if $k=1$ then
Test whether S is a configuration that solves the puzzle
if S solves the puzzle then
return "Solution found: " S
else
PuzzleSolve(k - 1, S,U)
Add e back to $U \quad\{e$ is now unused $\}$
Remove e from the end of S

Multiple Recursion (§ 4.1.3)

- Motivating example: summation puzzles

$$
\begin{aligned}
& \text { pot }+ \text { pan }=\text { bib } \\
& \text { dog }+c a t=\text { pig } \\
& \text { boy }+ \text { girl }=\text { baby }
\end{aligned}
$$

- Multiple recursion: makes potentially many recursive calls (not just one or two).

Visualizing PuzzleSolve

