Quick-Sort

Partition

- We partition an input sequence as follows:
- We remove, in turn, each element y from S and
- We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes $\boldsymbol{O}(1)$ time
- Thus, the partition step of quick-sort takes $\boldsymbol{O}(\boldsymbol{n})$ time

Quick-Sort (§ 10.2)

- Quick sort is a randomized sorting algorithm based on the divide- and onquer
 paradigm:
- Divide: pick a random element \boldsymbol{x} (called pivot) and partition S into
- L elements less than x
- E elements equal \boldsymbol{x}
- \boldsymbol{G} elements greater than \boldsymbol{x}
- Recur: sort L and G
- Conquer: join L, E and G

G

-
-

Quick-Sort Tree

- An execution of quick ort is depicted by a binary tree
- Each node represents a recursive call of quick-sort and stores
- Unsorted sequence before the execution and its pivot
- Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1

$$
749 \underline{6} 2 \rightarrow 24 \underline{6} 79
$$

Execution Example

- Pivot selection

Execution Example (cont.)

- Partition, recursive call, base case

Execution Example (cont.)

- Partition, recursive call, pivot selection

- Recursive call, ..., base case, join

Execution Example (cont.)

*Recursive call, pivot selection

Execution Example (cont.)

- Join, join

Execution Example (cont.)

- Partition, ..., recursive call, base case

Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- One of \boldsymbol{L} and \boldsymbol{G} has size $\boldsymbol{n}-1$ and the other has size 0
- The running time is proportional to the sum

$$
\boldsymbol{n}+(\boldsymbol{n}-1)+\ldots+2+1
$$

- Thus, the worst-case running time of quick-sort is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$
depth time

Expected Running Time

- Consider a recursive call of quick-sort on a sequence of size s
- Good call: the sizes of L and G are each less than $3 s / 4$
- Bad call: one of L and \boldsymbol{G} has size greater than $3 \boldsymbol{s} / 4$

Good call

Bad call

- A call is good with probability $1 / 2$
- $1 / 2$ of the possible pivots cause good calls:

Expected Running Time, Part 2

- Probabilistic Fact: The expected number of coin tosses required in order to get \boldsymbol{k} heads is $2 \boldsymbol{k}$
- For a node of depth i, we expect
- $i / 2$ ancestors are good calls
- The size of the input sequence for the current call is at most $(3 / 4)^{i / 2} n$
- Therefore, we have
- For a node of depth $2 \log _{43} n$, the expected input size is one
- The expected height of the quick-sort tree is $\boldsymbol{O}(\log \boldsymbol{n})$
- The amount or work done at the nodes of the same depth is $\boldsymbol{O}(\boldsymbol{n})$
* Thus, the expected running time of quick-sort is $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$

total expected time: $O(n \log n)$

In-Place Quick-Sort

- Quick-sort can be implemented to run in-place
- In the partition step, we use replace operations to rearrange the elements of the input sequence such that
- the elements less than the pivot have rank less than h
- the elements equal to the pivot have rank between h and k
- the elements greater than the pivot have rank greater than k
- The recursive calls consider
- elements with rank less than \boldsymbol{h}

Algorithm inPlaceQuickSort(S, l, r)
Input sequence S, ranks I and r
Output sequence S with the elements of rank between \boldsymbol{l} and \boldsymbol{r} rearranged in increasing order

if $l \geq r$

return

$i \leftarrow$ a random integer between l and r
$x \leftarrow$ S.elemAtRank (i)
$(h, k) \leftarrow$ inPlacePartition (x)
inPlaceQuickSort(S, $\boldsymbol{l}, \boldsymbol{h}-1)$
inPlaceQuickSort(S, $\boldsymbol{k}+1, r$)

- elements with rank greater than \boldsymbol{k}

In-Place Partitioning

Perform the partition using two indices to split S into L and E U G (a similar method can split E U G into E and G).

	k														
3	2	5	1	0	7	3	5	9	2	7	9	8	9	7	$\underline{6}$

Repeat until j and k cross:

- Scan j to the right until finding an element $\geq \mathrm{x}$.
- Scan k to the left until finding an element $<x$.
- Swap elements at indices j and k

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection sort	$\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$	in-place slow (good for small inputs)
insertion sort	$\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$	in-place slow (good for small inputs)
quick sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ expected	in-place, randomized fastest (good for large inputs)
heap sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$	in-place fast (good for large inputs)
merge- sort	$\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$	sequential data access fast (good for huge inputs)

Java Implementation

public static void quickSort (Object[] S, Comparator c) \{ if (S.length < 2) return; // the array is already sorted in this case
quickSortStep(S, c, 0, S.length Di// recursive sort method

only works for distinct elements
$\}_{\text {private }}^{\}}$static void quickSortStep (Object[] S, Comparator c,
private static void quickSortStep (Object[] S, Compara
if (leftBound $>=$ rightBound) return; // the indices have crossed object temp; // temp object used for swapping Object pivot $=$ S[rightBound]
int leftIndex = leftBound; // will scan rightward
int rightIndex $=$ rightBound $1 / / /$ will scan leftward
while (leftIndex <= rightIndex) $\{/ /$ scan right until larger than the pivot

I/ scan leftward to find an element smaller than the pivot
while ((rightIndex $>=$ leftIndex) \&\& (c.compare(S[rightindex], pivot) $>=0$)) rightIndex-
if (leftIndex < rightIndex) \{ // both elements were found temp $=$ S[rightIndex];
[leftIndex] = temp . tIndex] = temp;
// the loop continues until the indices cros
emp $=$ S[rightBound]; // swap pivot with the element at leftindex [rightBound] $=S[$ leftIIndex];
is now at leftIndex, so recurse quickSortStep (S, c, leftIndex +1 , leftindex i);
${ }^{3}$

