

© 2004 Goodrich, Tamassia

Pattern Matching

Strings (§ 11.1)

• A substring P[i...j] of P is the

the characters with ranks

A prefix of P is a substring of

 A suffix of P is a substring of the type P[i..m-1]

(pattern), the pattern matching

problem consists of finding a

between *i* and *i*

the type P[0..i]

Given strings T (text) and P

substring of T equal to P

subsequence of P consisting of

- A string is a sequence of characters
- Examples of strings:
- - Java program
 - HTML document DNA sequence
 - Digitized image
- lacktriangle An alphabet Σ is the set of possible characters for a family of strings
- Example of alphabets:
 - ASCII
 - Unicode
 - **(0, 1)**

© 2004 Goodrich, Tamassia

{A, C, G, T}

 Text editors Search engines

Applications:

Biological research

Pattern Matching

Brute-Force Pattern Matching (§ 11.2.1)

- The brute-force pattern matching algorithm compares the pattern P with the text T for each possible shift of P relative to T, until either
 - a match is found, or
 - all placements of the pattern have been tried
- Brute-force pattern matching runs in time O(nm)
- Example of worst case:
 - $T = aaa \dots ah$
 - P = aaah
 - may occur in images and DNA sequences
 - unlikely in English text

Algorithm BruteForceMatch(T, P)

Input text *T* of size *n* and pattern P of size m

Output starting index of a substring of T equal to P or -1if no such substring exists

for $i \leftarrow 0$ to n - m{ test shift *i* of the pattern } $i \leftarrow 0$ while $j < m \land T[i+j] = P[j]$ $i \leftarrow i + 1$ if j = m**return** *i* {match at *i*}

break while loop {mismatch}

return -1 {no match anywhere}

Pattern Matching

Boyer-Moore Heuristics (§ 11.2.2)

The Boyer-Moore's pattern matching algorithm is based on two heuristics

Looking-glass heuristic: Compare P with a subsequence of T moving backwards

Character-jump heuristic: When a mismatch occurs at T[i] = c

- If P contains c, shift P to align the last occurrence of c in P with T[i]
- Else, shift P to align P[0] with T[i+1]
- Example

Last-Occurrence Function

- lacktrianglet Boyer-Moore's algorithm preprocesses the pattern P and the alphabet $\mathcal E$ to build the last-occurrence function L mapping $\mathcal E$ to integers, where L(c) is defined as
 - the largest index i such that P[i] = c or
 - -1 if no such index exists
- Example:
 - $\Sigma = \{a, b, c, d\}$ P = abacab

c	а	b	c	d
L(c)	4	5	3	-1

- The last-occurrence function can be represented by an array indexed by the numeric codes of the characters
- The last-occurrence function can be computed in time O(m+s), where m is the size of P and s is the size of \mathcal{E}

© 2004 Goodrich, Tamassia

Pattern Matching

5

The Boyer-Moore Algorithm

© 2004 Goodrich, Tamassia

Pattern Matching

Example

Analysis

- Boyer-Moore's algorithm runs in time O(nm + s)
- Example of worst case:
 - $T = aaa \dots a$
 - P = baaa
- The worst case may occur in images and DNA sequences but is unlikely in English text
- Boyer-Moore's algorithm is significantly faster than the brute-force algorithm on English text

© 2004 Goodrich, Tamassia

Pattern Matching

7

© 2004 Goodrich, Tamassia

Pattern Matching

2

The KMP Algorithm (§ 11.2.3)

- Knuth-Morris-Pratt's algorithm compares the pattern to the text in left-to-right, but shifts the pattern more intelligently than the brute-force algorithm.
- When a mismatch occurs, what is the most we can shift the pattern so as to avoid redundant comparisons?
- Answer: the largest prefix of P[0.j] that is a suffix of P[1.j]

© 2004 Goodrich, Tamassia

The KMP Algorithm

- The failure function can be represented by an array and can be computed in O(m) time
- At each iteration of the whileloop, either
 - i increases by one, or
 - the shift amount i-j increases by at least one (observe that F(j-1) < j)
- Hence, there are no more than 2n iterations of the while-loop
- Thus, KMP's algorithm runs in optimal time O(m + n)

gorith	m KMPMatch(T, P)
$F \leftarrow i$	failureFunction(P)
$i \leftarrow 0$	
$i \leftarrow 0$	
while	i < n
if	T[i] = P[j]
	if $j = m - 1$
	return $i - j$ { match }
	else
	$i \leftarrow i + 1$
	<i>j</i> ← <i>j</i> + 1
el	se
	if $j > 0$
	$j \leftarrow F[j-1]$
	else
	<i>i</i> ← <i>i</i> + 1
retur	n −1 { no match }

11

KMP Failure Function

- Knuth-Morris-Pratt's algorithm preprocesses the pattern to find matches of prefixes of the pattern with the pattern itself
- j
 0
 1
 2
 3
 4
 5

 P[j]
 a
 b
 a
 a
 b
 a

 F(j)
 0
 0
 1
 1
 2
 3
- ◆ The failure function F(j) is defined as the size of the largest prefix of P[0.j] that is also a suffix of P[1.j]
- Knuth-Morris-Pratt's algorithm modifies the brute-force algorithm so that if a mismatch occurs at $P[j] \neq T[i]$ we set $j \leftarrow F(j-1)$

b	a	a	b	a			
				j			
		а	b	а	а	b	a
		√ (j -	\rightarrow			L	-

© 2004 Goodrich, Tamassia

Pattern Matching

10

Computing the Failure Function

- The failure function can be represented by an array and can be computed in *O*(*m*) time
- The construction is similar to the KMP algorithm itself
- At each iteration of the whileloop, either
 - *i* increases by one, or
 - the shift amount i-j increases by at least one (observe that F(j-1) < j)
- Hence, there are no more than 2m iterations of the while-loop

```
Algorithm failureFunction(P)
     F[0] \leftarrow 0
    i \leftarrow 1
    i \leftarrow 0
     while i < m
         if P[i] = P[j]
                {we have matched i + 1 chars}
               F[i] \leftarrow j+1
              i \leftarrow i + 1
              i \leftarrow i + 1
          else if i > 0 then
                {use failure function to shift P}
              i \leftarrow F[i-1]
          else
               F[i] \leftarrow 0 \{ \text{ no match } \}
              i \leftarrow i + 1
```

© 2004 Goodrich, Tamassia Pattern Matching

© 2004 Goodrich, Tamassia

Pattern Matching

12

