Pattern Matching

Strings (§ 11.1)

- A string is a sequence of characters
- Examples of strings:
- Java program
- HTML document
- DNA sequence
- Digitized image
- An alphabet Σ is the set of possible characters for a family of strings
- Example of alphabets:
- ASCII
- Unicode
- $\{0,1\}$
- $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$
© 2004 Goodrich, Tamassia
- Let \boldsymbol{P} be a string of size \boldsymbol{m}
- A substring $P[i . . j]$ of P is the subsequence of P consisting of the characters with ranks between i and j
- A prefix of P is a substring of the type $P[0$.. $i]$
- A suffix of P is a substring of the type $P[\boldsymbol{i} . . \boldsymbol{m}-1]$
* Given strings T (text) and P (pattern), the pattern matching problem consists of finding a substring of T equal to P
- Applications:
- Text editors
- Search engines - Biological research

Brute-Force Pattern
 Matching (§ 11.2.1)

- The brute-force pattern matching algorithm compares the pattern P with the text T for each possible shift of \boldsymbol{P} relative to T, until either
- a match is found, or
- all placements of the pattern have been tried
- Brute-force pattern matching runs in time $\boldsymbol{O}(\boldsymbol{n m})$
- Example of worst case:
- $T=a a a \ldots a h$
- $P=a a a h$
- may occur in images and DNA sequences
- unlikely in English text

Algorithm BruteForceMatch(T, P)
Input text \boldsymbol{T} of size \boldsymbol{n} and pattern \boldsymbol{P} of size \boldsymbol{m}
Output starting index of a substring of \boldsymbol{T} equal to \boldsymbol{P} or -1
if no such substring exists
for $i \leftarrow 0$ to $n-m$
\{ test shift \boldsymbol{i} of the pattern \}
$j \leftarrow 0$
while $j<m \wedge T[i+j]=P[j]$
$j \leftarrow j+1$
if $\boldsymbol{j}=\boldsymbol{m}$
return i \{match at $i\}$
else
break while loop \{mismatch\}
return -1 \{no match anywhere\}

Boyer-Moore Heuristics (§ 11.2.2)

* The Boyer-Moore's pattern matching algorithm is based on two heuristics
Looking-glass heuristic: Compare \boldsymbol{P} with a subsequence of T moving backwards
Character-jump heuristic: When a mismatch occurs at $T[i]=c$
- If P contains c, shift P to align the last occurrence of c in P with $T i]$
- Else, shift P to align $P[0]$ with $T[i+1]$
- Example

| a | p | a | t | t | e | r | n | | m | a | t | c | h | i | n | g | | a | l | g | o | r | i | t | h | m |
| :--- |

Last-Occurrence Function

- Boyer-Moore's algorithm preprocesses the pattern \boldsymbol{P} and the alphabet Σ to build the last-occurrence function L mapping Σ to integers, where $L(c)$ is defined as
- the largest index \boldsymbol{i} such that $P[i]=\boldsymbol{c}$ or
- -1 if no such index exists
- Example:
- $\Sigma=\{a, b, c, d\}$
- $P=a b a c a b$

\boldsymbol{c}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}
$\boldsymbol{L}(\boldsymbol{c})$	4	5	3	-1

- The last-occurrence function can be represented by an array indexed by the numeric codes of the characters
- The last-occurrence function can be computed in time $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{s})$, where \boldsymbol{m} is the size of P and s is the size of Σ

The Boyer-Moore Algorithm

Algorithm BoyerMooreMatch (T, P, Σ)
$L \leftarrow$ lastOccurenceFunction (P, Σ)
$i \leftarrow m-1$
$j \leftarrow m-1$
repeat
if $T[i]=P[j]$
if $j=0$
return \boldsymbol{i} \{ match at \boldsymbol{i} \}
else
$i \leftarrow i-1$
$j \leftarrow j-1$
else
\{ character-jump \}
$l \leftarrow L[T i]]$
$\boldsymbol{i} \leftarrow \boldsymbol{i}+\boldsymbol{m}-\min (\boldsymbol{j}, 1+\boldsymbol{l})$
$j \leftarrow m-1$
until $i>n-1$
return -1 \{no match \}

Case 1: $\boldsymbol{j} \leq 1+\boldsymbol{l}$

Case 2: $1+\boldsymbol{l} \leq \boldsymbol{j}$

6

Example

Analysis

- Boyer-Moore's algorithm runs in time $\boldsymbol{O}(\boldsymbol{n m}+\boldsymbol{s})$
- Example of worst case:
- $T=a a a \ldots a$
- $P=b a a a$
- The worst case may occur in images and DNA sequences but is unlikely in English text
- Boyer-Moore's algorithm is significantly faster than the brute-force algorithm on English text

$$
\begin{array}{|c|l|l|l|l|l|}
6 & 5 & 4 & 3 & 2 & 1 \\
\hline b & \boldsymbol{a} & \boldsymbol{a} & \boldsymbol{a} & \boldsymbol{a} & \boldsymbol{a} \\
\hline
\end{array}
$$

$$
\begin{array}{|c|c|c|c|c|c|c|}
\hline 12 & 11 & 10 & 9 & 8 & 7 \\
\hline \boldsymbol{b} & \boldsymbol{a} & \boldsymbol{a} & \boldsymbol{a} & \boldsymbol{a} & \boldsymbol{a} \\
\hline
\end{array}
$$

$$
\begin{array}{llllllll}
18 & 17 & 16 & 15 & 14 & 13 \\
\hline \boldsymbol{b} & \boldsymbol{a} & \boldsymbol{a} & \boldsymbol{a} & \boldsymbol{a} & \\
\hline
\end{array}
$$

The KMP Algorithm (§ 11.2.3)

- Knuth-Morris-Pratt's algorithm compares the pattern to the text in left-to-right, but shifts the pattern more intelligently than the brute-force algorithm.
- When a mismatch occurs, what is the most we can shift the pattern so as to avoid redundant comparisons?
- Answer: the largest prefix of $P[0 . . j]$ that is a suffix of $P[1 . j]$

KMP Failure Function

- Knuth-Morris-Pratt's algorithm preprocesses the pattern to find matches of prefixes of the pattern with the pattern itself
- The failure function $F(j)$ is defined as the size of the largest prefix of $P[0 . . j]$ that is also a suffix of $P[1 . . j]$
- Knuth-Morris-Pratt's algorithm modifies the bruteforce algorithm so that if a mismatch occurs at $P[j] \neq \boldsymbol{T}[i]$

\boldsymbol{j}	0	1	2	3	4	5
$P[j]$	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{a}	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{a}
$\boldsymbol{F}(\boldsymbol{j})$	0	0	1	1	2	3

The KMP Algorithm

- The failure function can be represented by an array and can be computed in $\boldsymbol{O}(\boldsymbol{m})$ time
- At each iteration of the whileloop, either
- i increases by one, or
- the shift amount $\boldsymbol{i}-\boldsymbol{j}$ increases by at least one (observe that $\boldsymbol{F}(\boldsymbol{j}-1)<\boldsymbol{j}$)
- Hence, there are no more than $2 \boldsymbol{n}$ iterations of the while-loop
- Thus, KMP's algorithm runs in optimal time $\boldsymbol{O}(\boldsymbol{m}+\boldsymbol{n})$

```
Algorithm KMPMatch(T, P)
    F}\leftarrow\mathrm{ failureFunction(P)
    i}\leftarrow
    j}\leftarrow
    while i<n
        if T[i]=P[j]
            if }\boldsymbol{j}=\boldsymbol{m}-
            return i-j {match }
            else
                                i\leftarrowi+1
                j}\leftarrowj+
            else
            if }\boldsymbol{j}>
                    j}\leftarrowF[j-1
            else
                i}\leftarrowi+
    return -1 {no match}
```


Computing the Failure Function

- The failure function can be represented by an array and can be computed in $\boldsymbol{O}(\boldsymbol{m})$ time
- The construction is similar to the KMP algorithm itself
- At each iteration of the whileloop, either
- i increases by one, or
- the shift amount $\boldsymbol{i}-\boldsymbol{j}$ increases by at least one (observe that $\boldsymbol{F}(\boldsymbol{j}-1)<\boldsymbol{j}$)
- Hence, there are no more than $2 \boldsymbol{m}$ iterations of the while-loop

Algorithm failureFunction(P)
$F[0] \leftarrow 0$
$i \leftarrow 1$
$j \leftarrow 0$
while $i<m$
if $P[i]=P[j]$
\{we have matched $\boldsymbol{j}+1$ chars \}
$F[i] \leftarrow j+1$
$i \leftarrow i+1$
$j \leftarrow j+1$
else if $j>0$ then
\{use failure function to shift \boldsymbol{P} \} $j \leftarrow F[j-1]$
else
$F[i] \leftarrow 0\{$ no match \}
$i \leftarrow i+1$

Example

	a	b	a	c	a	a		b	a	c	c	a	b		a	c		a	b
		2	3	4	5	6													
	a	b	a	c	a	b													
						7													
					a	b		a	c	a	b								
								9	10	11	12								
						a		b	a	c	a	b							
											13								
											a	b	a		c	a		b	
${ }^{j}$	0	1		2	3		4		5										
$P[j]$	a	b		a	c		a		b										
$F(j)$	0	0		1	0		1		2										

