
Tries 1© 2004 Goodrich, Tamassia

Tries

e nimize

nimize ze

zei mi

mize nimize ze

Tries 2© 2004 Goodrich, Tamassia

Preprocessing Strings
Preprocessing the pattern speeds up pattern matching 
queries

After preprocessing the pattern, KMP’s algorithm performs 
pattern matching in time proportional to the text size

If the text is large, immutable and searched for often 
(e.g., works by Shakespeare), we may want to 
preprocess the text instead of the pattern
A trie is a compact data structure for representing a 
set of strings, such as all the words in a text

A tries supports pattern matching queries in time 
proportional to the pattern size

Tries 3© 2004 Goodrich, Tamassia

Standard Tries (§ 11.3.1)
The standard trie for a set of strings S is an ordered tree such that:

Each node but the root is labeled with a character
The children of a node are alphabetically ordered
The paths from the external nodes to the root yield the strings of S

Example: standard trie for the set of strings
S = { bear, bell, bid, bull, buy, sell, stock, stop }

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

Tries 4© 2004 Goodrich, Tamassia

Analysis of Standard Tries
A standard trie uses O(n) space and supports 
searches, insertions and deletions in time O(dm), 
where:
n total size of the strings in S
m size of the string parameter of the operation
d size of the alphabet 

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d



Tries 5© 2004 Goodrich, Tamassia

Word Matching with a Trie
We insert the 
words of the 
text into a 
trie
Each leaf 
stores the 
occurrences 
of the 
associated 
word in the 
text 

s e e b e a r ? s e l l s t o c k !

s e e b u l l ? b u y s t o c k !

b i d s t o c k !

a

a

h e t h e b e l l ? s t o p !

b i d s t o c k !

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
a r

87 88

a

e

b

l

s

u

l

e t

e

0, 24

o

c

i

l

r

6
l

78

d

47, 58
l

30

y

36
l

12 k

17, 40,
51, 62

p

84

h

e

r

69

a

Tries 6© 2004 Goodrich, Tamassia

Compressed Tries 
(§ 11.3.2)

A compressed trie has 
internal nodes of degree 
at least two
It is obtained from 
standard trie by 
compressing chains of 
“redundant” nodes

e

b

ar ll

s

u

ll y

ell to

ck p

id

a

e

b

r

l

l

s

u

l

l

y

e t

l

l

o

c

k

p

i

d

Tries 7© 2004 Goodrich, Tamassia

Compact Representation
Compact representation of a compressed trie for an array of strings:

Stores at the nodes ranges of indices instead of substrings
Uses O(s) space, where s is the number of strings in the array
Serves as an auxiliary index structure

s e e
b e a r
s e l l
s t o c k

b u l l
b u y
b i d

h e
b e l l
s t o p

0 1 2 3 4
a rS[0] =

S[1] =

S[2] =

S[3] =

S[4] =

S[5] =

S[6] =

S[7] =

S[8] =

S[9] =

0 1 2 3 0 1 2 3

1, 1, 1

1, 0, 0 0, 0, 0

4, 1, 1

0, 2, 2

3, 1, 2

1, 2, 3 8, 2, 3

6, 1, 2

4, 2, 3 5, 2, 2 2, 2, 3 3, 3, 4 9, 3, 3

7, 0, 3

0, 1, 1

Tries 8© 2004 Goodrich, Tamassia

Suffix Trie (§ 11.3.3)
The suffix trie of a string X is the compressed trie of all the 
suffixes of X

e nimize

nimize ze

zei mi

mize nimize ze

m i n i z em i
0 1 2 3 4 5 6 7



Tries 9© 2004 Goodrich, Tamassia

Analysis of Suffix Tries
Compact representation of the suffix trie for a string 
X of size n from an alphabet of size d

Uses O(n) space
Supports arbitrary pattern matching queries in X in O(dm)
time, where m is the size of the pattern
Can be constructed in O(n) time

7, 7 2, 7

2, 7 6, 7

6, 7

4, 7 2, 7 6, 7

1, 1 0, 1

m i n i z em i
0 1 2 3 4 5 6 7


