$(2,4)$ Trees

\qquad
\qquad

Multi-Way Inorder Traversal

- We can extend the notion of inorder traversal from binary trees to multi-way search trees
- Namely, we visit item $\left(\boldsymbol{k}_{i}, \boldsymbol{o}_{i}\right)$ of node \boldsymbol{v} between the recursive traversals of the subtrees of v rooted at children v_{i} and v_{i+1}
- An inorder traversal of a multi-way search tree visits the keys in increasing order

Multi-Way Search Tree (§ 9.4.1)

* A multi vay search tree is an ordered tree such that
- Each internal node has at least two children and stores $\boldsymbol{d}-1$ key-element items $\left(\boldsymbol{k}_{\boldsymbol{i}}, \boldsymbol{o}_{\boldsymbol{i}}\right)$, where \boldsymbol{d} is the number of children
- For a node with children $\boldsymbol{v}_{1} \boldsymbol{v}_{2} \ldots \boldsymbol{v}_{d}$ storing keys $\boldsymbol{k}_{1} \boldsymbol{k}_{2} \ldots \boldsymbol{k}_{d-1}$
- keys in the subtree of \boldsymbol{v}_{1} are less than \boldsymbol{k}_{1}
- keys in the subtree of $\boldsymbol{v}_{\boldsymbol{i}}$ are between \boldsymbol{k}_{i-1} and $\boldsymbol{k}_{\boldsymbol{i}}(\boldsymbol{i}=2, \ldots, \boldsymbol{d}-1)$
- keys in the subtree of \boldsymbol{v}_{d} are greater than \boldsymbol{k}_{d-1}
- The leaves store no items and serve as placeholders

Multi-Way Searching

- Similar to search in a binary search tree
* A each internal node with children $\boldsymbol{v}_{1} \boldsymbol{v}_{2} \ldots \boldsymbol{v}_{d}$ and keys $\boldsymbol{k}_{1} \boldsymbol{k}_{2} \ldots \boldsymbol{k}_{d-1}$ - $\boldsymbol{k}=\boldsymbol{k}_{\boldsymbol{i}}(\boldsymbol{i}=1, \ldots, \boldsymbol{d}-1)$: the search terminates successfully
- $\boldsymbol{k}<\boldsymbol{k}_{1}$: we continue the search in child \boldsymbol{v}_{1}
- $\boldsymbol{k}_{i-1}<\boldsymbol{k}<\boldsymbol{k}_{\boldsymbol{i}}(\boldsymbol{i}=2, \ldots, \boldsymbol{d}-1)$: we continue the search in child v_{i}
- $\boldsymbol{k}>\boldsymbol{k}_{d-1}$: we continue the search in child v_{d}
- Reaching an external node terminates the search unsuccessfully
- Example: search for 30

$(2,4)$ Trees (§ 9.4.2)

- A $(2,4)$ tree (also called 2-4 tree or 2-3-4 tree) is a multi-way search with the following properties
- Node-Size Property: every internal node has at most four children
- Depth Property: all the external nodes have the same depth
- Depending on the number of children, an internal node of a $(2,4)$ tree is called a 2 -node, 3 -node or 4 -node

Height of a $(2,4)$ Tree

- Theorem: A $(2,4)$ tree storing \boldsymbol{n} items has height $\boldsymbol{O}(\log \boldsymbol{n})$ Proof:
- Let \boldsymbol{n} be the height of a $(2,4)$ tree with n items
- Since there are at least 2^{i} items at depth $\boldsymbol{i}=0, \ldots, \boldsymbol{h}-1$ and no items at depth h, we have

$$
n \geq 1+2+4+\ldots+2^{h-1}=2^{h}-1
$$

- Thus, $\boldsymbol{h} \leq \log (\boldsymbol{n}+1)$
- Searching in a $(2,4)$ tree with n items takes $\boldsymbol{O}(\log n)$ time depth items

Insertion

- We insert a new item $(\boldsymbol{k}, \boldsymbol{o})$ at the parent \boldsymbol{v} of the leaf reached by searching for \boldsymbol{k}
- We preserve the depth property but
- We may cause an overflow (i.e., node v may become a 5 -node)
- Example: inserting key 30 causes an overflow

Overflow and Split

- We handle an overflow at a 5-node v with a split operation:
- let $\boldsymbol{v}_{1} \ldots \boldsymbol{v}_{5}$ be the children of \boldsymbol{v} and $\boldsymbol{k}_{1} \ldots \boldsymbol{k}_{4}$ be the keys of \boldsymbol{v}
- node v is replaced nodes v^{\prime} and $v^{\prime \prime}$
- \boldsymbol{v}^{\prime} is a 3 -node with keys $\boldsymbol{k}_{1} \boldsymbol{k}_{2}$ and children $\boldsymbol{v}_{1} v_{2} v_{3}$
- $v^{\prime \prime}$ is a 2 -node with key k_{4} and children $v_{4} v_{5}$
- key \boldsymbol{k}_{3} is inserted into the parent \boldsymbol{u} of \boldsymbol{v} (a new root may be created)
- The overflow may propagate to the parent node u

Analysis of Insertion

Algorithm insert (k, o)

1. We search for key \boldsymbol{k} to locate the insertion node \boldsymbol{v}
2. We add the new entry $(\boldsymbol{k}, \boldsymbol{o})$ at node \boldsymbol{v}
3. while overflow(v)
if isRoot(ν)
create a new empty root above v $v \leftarrow \operatorname{split}(v)$

- Let T be a $(2,4)$ tree with n items
- Tree \boldsymbol{T} has $\boldsymbol{O}(\log \boldsymbol{n})$ height
- Step 1 takes $\boldsymbol{O}(\log n)$ time because we visit $O(\log \boldsymbol{n})$ nodes
- Step 2 takes $\boldsymbol{O}(1)$ time
- Step 3 takes $\boldsymbol{O}(\log \boldsymbol{n})$ time because each split takes $\boldsymbol{O}(1)$ time and we perform $\boldsymbol{O}(\log n)$ splits
- Thus, an insertion in a $(2,4)$ tree takes $\boldsymbol{O}(\log \boldsymbol{n})$ time

Deletion

- We reduce deletion of an entry to the case where the item is at the node with leaf children
- Otherwise, we replace the entry with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter entry
- Example: to delete key 24, we replace it with 27 (inorder successor)

(c) 2004 Goodrich, Tamassia
$(2,4)$ Trees

Underflow and Fusion

- Deleting an entry from a node v may cause an underflow, where node v becomes a 1-node with one child and no keys
- To handle an underflow at node v with parent u, we consider two cases
- Case 1: the adjacent siblings of v are 2-nodes
- Fusion operation: we merge v with an adjacent sibling w and move an entry from \boldsymbol{u} to the merged node \boldsymbol{v}^{\prime}
- After a fusion, the underflow may propagate to the parent u

Underflow and Transfer

- To handle an underflow at node v with parent \boldsymbol{u}, we consider two cases
- Case 2: an adjacent sibling w of v is a 3-node or a 4-node
- Transfer operation:

1. we move a child of w to v
2. we move an item from u to v
3. we move an item from w to u

- After a transfer, no underflow occurs

Analysis of Deletion

* Let T be a $(2,4)$ tree with n items
- Tree \boldsymbol{T} has $\boldsymbol{O}(\log \boldsymbol{n})$ height
$*$ In a deletion operation
- We visit $\boldsymbol{O}(\log \boldsymbol{n})$ nodes to locate the node from which to delete the entry
- We handle an underflow with a series of $\boldsymbol{O}(\log \boldsymbol{n})$ fusions, followed by at most one transfer
- Each fusion and transfer takes $\boldsymbol{O}(1)$ time
*Thus, deleting an item from a $(2,4)$ tree takes $\boldsymbol{O}(\log \boldsymbol{n})$ time

Implementing a Dictionary

- Comparison of efficient dictionary implementations

	Search	Insert	Delete	Notes
Hash Table	1 expected	1 expected	1 expected	no ordered dictionary methods simple to implement
Skip List	$\log \boldsymbol{n}$ high prob.	$\log \boldsymbol{n}$ high prob.	$\log \boldsymbol{n}$ high prob.	randomized insertion to implement $(2,4)$ Tree
$\log \boldsymbol{n}$ worst-case	$\log \boldsymbol{n}$ worst-case	$\log \boldsymbol{n}$ worst-case	complex to implement	

