AVL Trees

AVL Tree Definition (§ 9.2)

- AVL trees are balanced.
- An AVL Tree is a binary search tree such that for every internal node v of T , the heights of the children of v can differ by at most 1 .

An example of an AVL tree where the heights are shown next to the nodes:

Height of an AVL Tree

- Fact: The height of an AVL tree storing n keys is $O(\log n)$.
- Proof: Let us bound $\mathbf{n}(\mathbf{h})$: the minimum number of internal nodes of an AVL tree of height h.
- We easily see that $n(1)=1$ and $n(2)=2$
- For $n>2$, an AVL tree of height h contains the root node, one AVL subtree of height $\mathrm{n}-1$ and another of height $\mathrm{n}-2$.
- That is, $n(h)=1+n(h-1)+n(h-2)$
- Knowing $n(h-1)>n(h-2)$, we get $n(h)>2 n(h-2)$. So $n(h)>2 n(h-2), n(h)>4 n(h-4), n(h)>8 n(n-6), \ldots$ (by induction), $n(h)>2^{i}(h-2 i)$
- Solving the base case we get: $n(h)>2^{h / 2-1}$
- Taking logarithms: $\mathrm{h}<2 \log \mathrm{n}(\mathrm{h})+2$
- Thus the height of an AVL tree is $\mathrm{O}(\log \mathrm{n})$

2004 Goodrich, Tamassia

Insertion in an AVL Tree

- Insertion is as in a binary search tree
- Always done by expanding an external node.
- Example:

before insertion

after insertion

Trinode Restructuring

- let (a, b, c) be an inorder listing of x, y, z
- perform the rotations needed to make b the topmost node of

Insertion Example, continued

Restructuring

 (as Single Rotations)- Single Rotations:

Restructuring

 (as Double Rotations)- double rotations:

Removal in an AVL Tree

- Removal begins as in a binary search tree, which means the node removed will become an empty external node. Its parent, w, may cause an imbalance.
- Example:

before deletion of 32

Rebalancing after a Removal

- Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height.
- We perform restructure (x) to restore balance at z.
- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached

Running Times for AVL Trees

a single restructure is $\mathrm{O}(1)$

- using a linked-structure binary tree

- find is $\mathrm{O}(\log n)$
- height of tree is $O(\log n)$, no restructures needed
- insert is $\mathrm{O}(\log n)$
- initial find is $O(\log n)$
- Restructuring up the tree, maintaining heights is $\mathrm{O}(\log \mathrm{n})$
- remove is $O(\log n)$
- initial find is $O(\log n)$
- Restructuring up the tree, maintaining heights is $\mathrm{O}(\log \mathrm{n})$

