
AVL Trees 1© 2004 Goodrich, Tamassia

AVL Trees
6

3 8

4

v

z

AVL Trees 2© 2004 Goodrich, Tamassia

AVL Tree Definition (§ 9.2)

AVL trees are 
balanced.
An AVL Tree is a 
binary search tree
such that for every 
internal node v of T, 
the heights of the 
children of v can 
differ by at most 1.

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

An example of an AVL tree where the 
heights are shown next to the nodes:

AVL Trees 3© 2004 Goodrich, Tamassia

Height of an AVL Tree
Fact: The height of an AVL tree storing n keys is O(log n).
Proof: Let us bound n(h): the minimum number of internal 
nodes of an AVL tree of height h.
We easily see that n(1) = 1 and n(2) = 2
For n > 2, an AVL tree of height h contains the root node, 
one AVL subtree of height n-1 and another of height n-2.
That is, n(h) = 1 + n(h-1) + n(h-2)
Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction),
n(h) > 2in(h-2i)

Solving the base case we get: n(h) > 2 h/2-1

Taking logarithms: h < 2log n(h) +2
Thus the height of an AVL tree is O(log n)

3

4 n(1)

n(2)

AVL Trees 4© 2004 Goodrich, Tamassia

Insertion in an AVL Tree
Insertion is as in a binary search tree
Always done by expanding an external node.
Example: 44

17 78

32 50 88

48 62

54
w

b=x

a=y

c=z

44

17 78

32 50 88

48 62

before insertion after insertion



AVL Trees 5© 2004 Goodrich, Tamassia

Trinode Restructuring
let (a,b,c) be an inorder listing of x, y, z
perform the rotations needed to make b the topmost node of 
the three

b=y

a=z

c=x

T0

T1

T2 T3

b=y

a=z c=x

T0 T1 T2 T3

c=y

b=x

a=z

T0

T1 T2

T3
b=x

c=ya=z

T0 T1 T2 T3

case 1: single rotation
(a left rotation about a)

case 2: double rotation
(a right rotation about c, 
then a left rotation about a)

(other two cases 
are symmetrical)

AVL Trees 6© 2004 Goodrich, Tamassia

Insertion Example, continued

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T0
T2

T3

x

y

z

2

3

4

5

6
7

1

88

44

17

7832 50

48

62
2

4

1

1

2 2

3

1
54

1

T0 T1

T2

T3

x

y z

unbalanced...

...balanced
1

2
3

4

5

6

7

T1

AVL Trees 7© 2004 Goodrich, Tamassia

Restructuring 
(as Single Rotations)

Single Rotations:

T0
T1

T2

T3

c = x
b = y

a = z

T0 T1 T2

T3

c = x
b = y

a = z
single rotation

T3
T2

T1

T0

a = x
b = y

c = z

T0T1T2

T3

a = x
b = y

c = z
single rotation

AVL Trees 8© 2004 Goodrich, Tamassia

Restructuring 
(as Double Rotations)

double rotations:

double rotationa = z

b = x
c = y

T0
T2

T1

T3 T0

T2
T3T1

a = z
b = x

c = y

double rotationc = z

b = x
a = y

T0
T2

T1

T3 T0

T2
T3 T1

c = z
b = x

a = y



AVL Trees 9© 2004 Goodrich, Tamassia

Removal in an AVL Tree
Removal begins as in a binary search tree, which 
means the node removed will become an empty 
external node. Its parent, w, may cause an imbalance.
Example: 

44

17

7832 50

8848

62

54

44

17

7850

8848

62

54

before deletion of 32 after deletion

AVL Trees 10© 2004 Goodrich, Tamassia

Rebalancing after a Removal
Let z be the first unbalanced node encountered while travelling 
up the tree from w. Also, let y be the child of z with the larger 
height, and let x be the child of y with the larger height.
We perform restructure(x) to restore balance at z.
As this restructuring may upset the balance of another node 
higher in the tree, we must continue checking for balance until 
the root of T is reached

44

17

7850

8848

62

54

w

c=x

b=y

a=z

44

17

78

50 88

48

62

54

AVL Trees 11© 2004 Goodrich, Tamassia

Running Times for 
AVL Trees

a single restructure is O(1)
using a linked-structure binary tree

find is O(log n)
height of tree is O(log n), no restructures needed

insert is O(log n)
initial find is O(log n)
Restructuring up the tree, maintaining heights is O(log n)

remove is O(log n)
initial find is O(log n)
Restructuring up the tree, maintaining heights is O(log n)


