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Red-Black Trees
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From (2,4) to Red-Black Trees
A red-black tree is a representation of a (2,4) tree by means of a 
binary tree whose nodes are colored red or black
In comparison with its associated (2,4) tree, a red-black tree has

same logarithmic time performance
simpler implementation with a single node type
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Red-Black Trees (§ 9.5)
A red- black tree can also be defined as a binary 
search tree that satisfies the following properties:

Root Property: the root is black
External Property: every leaf is black
Internal Property: the children of a red node are black
Depth Property: all the leaves have the same black depth
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Height of a Red-Black Tree
Theorem: A red- black tree storing n entries has 
height O(log n)
Proof:

The height of a red-black tree is at most twice the height of 
its associated (2,4) tree, which is O(log n)

The search algorithm for a binary search tree is the 
same as that for a binary search tree
By the above theorem, searching in a red- black tree 
takes O(log n) time
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Insertion
To perform operation insert(k, o), we execute the insertion 
algorithm for binary search trees and color red the newly inserted 
node z unless it is the root

We preserve the root, external, and depth properties
If the parent v of z is black, we also preserve the internal property and 
we are done 
Else (v is red ) we have a double red (i.e., a violation of the internal 
property), which requires a reorganization of the tree

Example where the insertion of  4 causes a double red:
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Remedying a Double Red
Consider a double red with child z and parent v, and let w be 
the sibling of v
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Case 1: w is black
The double red is an incorrect 
replacement of a 4-node
Restructuring: we change the 
4-node replacement

Case 2: w is red
The double red corresponds 
to an overflow
Recoloring: we perform the 
equivalent of a split
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Restructuring
A restructuring remedies a child-parent double red when the 
parent red node has a black sibling
It is equivalent to restoring the correct replacement of a 4-node
The internal property is restored and the other properties are 
preserved
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Restructuring (cont.)
There are four restructuring configurations depending on 
whether the double red nodes are left or right children
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Recoloring
A recoloring remedies a child-parent double red when the parent 
red node has a red sibling
The parent v and its sibling w become black and the grandparent u
becomes red, unless it is the root
It is equivalent to performing a split on a 5-node
The double red violation may propagate to the grandparent u
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Analysis of Insertion
Recall that a red-black tree 
has O(log n) height
Step 1 takes O(log n) time 
because we visit O(log n)
nodes
Step 2 takes O(1) time
Step 3 takes O(log n) time 
because we perform

O(log n) recolorings, each 
taking O(1) time, and
at most one restructuring 
taking O(1) time

Thus, an insertion in a red-
black tree takes O(log n) time

Algorithm insert(k, o)

1. We search for key k to locate 
the insertion node z

2. We add the new entry (k, o) at 
node z and color z red 

3. while doubleRed(z)
if isBlack(sibling(parent(z)))

z ← restructure(z)
return

else { sibling(parent(z) is red }
z ← recolor(z)
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Deletion
To perform operation remove(k), we first execute the deletion 
algorithm for binary search trees
Let v be the internal node removed, w the external node removed, 
and r the sibling of w

If either v of r was red, we color r black and we are done
Else (v and r were both black) we color r double black, which is a 
violation of the internal property requiring a reorganization of the tree

Example where the deletion of  8 causes a double black:
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Remedying a Double Black
The algorithm for remedying a double black node w with sibling 
y considers three cases
Case 1: y is black and has a red child

We perform a restructuring, equivalent to a transfer , and we are 
done

Case 2: y is black and its children are both black
We perform a recoloring, equivalent to a fusion, which may 
propagate up the double black violation

Case 3: y is red
We perform an adjustment, equivalent to choosing a different 
representation of a 3-node, after which either Case 1 or Case 2 
applies

Deletion in a red-black tree takes O(log n) time
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Red-Black Tree Reorganization
remedy double redInsertion

double red removed 
or propagated upsplitrecoloring

double red removedchange of 4-node 
representationrestructuring

result(2,4) tree actionRed-black tree action

remedy double blackDeletion

restructuring or 
recoloring follows

change of 3-node 
representationadjustment

double black removed 
or propagated upfusionrecoloring

double black removedtransferrestructuring

result(2,4) tree actionRed-black tree action


