

© 2004 Goodrich, Tamassia

Red-Black Trees

4

Insertion

To perform operation insert(k, o), we execute the insertion algorithm for binary search trees and color red the newly inserted node z unless it is the root

- We preserve the root, external, and depth properties
- If the parent v of z is black, we also preserve the internal property and we are done
- Else (v is red) we have a double red (i.e., a violation of the internal property), which requires a reorganization of the tree
- Example where the insertion of 4 causes a double red:

Remedying a Double Red Consider a double red with child z and parent v, and let w be the sibling of v Case 1: w is black The double red is an incorrect replacement of a 4-node Restructuring: we change the 4-node replacement Restructuring: we change the 4-node replacement

Red-Black Trees

© 2004 Goodrich, Tamassia

6

Recoloring

- A recoloring remedies a child-parent double red when the parent red node has a red sibling
- The parent v and its sibling w become black and the grandparent u becomes red, unless it is the root
- It is equivalent to performing a split on a 5-node
- The double red violation may propagate to the grandparent u

Analysis of Insertion

has $O(\log n)$ height
Step 1 takes O(log n) time because we visit O(log n) nodes
Step 2 takes <i>O</i> (1) time
Step 3 takes O(log n) time
because we perform
 O(log n) recolorings, each
taking O(1) time, and
 at most one restructuring
taking O (1) time
Thus, an insertion in a red- black tree takes $O(\log n)$ time

Red-Black Tree Reorganization

Insertion remedy double red		
Red-black tree action	(2,4) tree action	result
restructuring	change of 4-node representation	double red removed
recoloring	split	double red removed or propagated up
Deletion	remedy double black	k
Red-black tree action	(2,4) tree action	result
restructuring	transfer	double black removed
recoloring	fusion	double black removed or propagated up
adjustment	change of 3-node representation	restructuring or recoloring follows
)4 Goodrich, Tamassia	Red-Black Trees	13