
Red-Black Trees 1© 2004 Goodrich, Tamassia

Red-Black Trees

6

3 8

4

v

z

Red-Black Trees 2© 2004 Goodrich, Tamassia

From (2,4) to Red-Black Trees
A red-black tree is a representation of a (2,4) tree by means of a
binary tree whose nodes are colored red or black
In comparison with its associated (2,4) tree, a red-black tree has

same logarithmic time performance
simpler implementation with a single node type

2 6 73 54

4 6

2 7

5

3

3

5OR

Red-Black Trees 3© 2004 Goodrich, Tamassia

Red-Black Trees (§ 9.5)
A red- black tree can also be defined as a binary
search tree that satisfies the following properties:

Root Property: the root is black
External Property: every leaf is black
Internal Property: the children of a red node are black
Depth Property: all the leaves have the same black depth

9

154

62 12

7

21

Red-Black Trees 4© 2004 Goodrich, Tamassia

Height of a Red-Black Tree
Theorem: A red- black tree storing n entries has
height O(log n)
Proof:

The height of a red-black tree is at most twice the height of
its associated (2,4) tree, which is O(log n)

The search algorithm for a binary search tree is the
same as that for a binary search tree
By the above theorem, searching in a red- black tree
takes O(log n) time

Red-Black Trees 5© 2004 Goodrich, Tamassia

Insertion
To perform operation insert(k, o), we execute the insertion
algorithm for binary search trees and color red the newly inserted
node z unless it is the root

We preserve the root, external, and depth properties
If the parent v of z is black, we also preserve the internal property and
we are done
Else (v is red) we have a double red (i.e., a violation of the internal
property), which requires a reorganization of the tree

Example where the insertion of 4 causes a double red:

6

3 8

6

3 8

4
z

v v

z

Red-Black Trees 6© 2004 Goodrich, Tamassia

Remedying a Double Red
Consider a double red with child z and parent v, and let w be
the sibling of v

4

6

7z
vw

2

4 6 7

.. 2 ..

Case 1: w is black
The double red is an incorrect
replacement of a 4-node
Restructuring: we change the
4-node replacement

Case 2: w is red
The double red corresponds
to an overflow
Recoloring: we perform the
equivalent of a split

4

6

7z
v

2 4 6 7

2
w

Red-Black Trees 7© 2004 Goodrich, Tamassia

Restructuring
A restructuring remedies a child-parent double red when the
parent red node has a black sibling
It is equivalent to restoring the correct replacement of a 4-node
The internal property is restored and the other properties are
preserved

4

6

7
z

vw
2

4 6 7

.. 2 ..

4

6

7

z

v

w
2

4 6 7

.. 2 ..

Red-Black Trees 8© 2004 Goodrich, Tamassia

Restructuring (cont.)
There are four restructuring configurations depending on
whether the double red nodes are left or right children

2

4

6
6

2

4

6

4

2
2

6

4

2 6

4

Red-Black Trees 9© 2004 Goodrich, Tamassia

Recoloring
A recoloring remedies a child-parent double red when the parent
red node has a red sibling
The parent v and its sibling w become black and the grandparent u
becomes red, unless it is the root
It is equivalent to performing a split on a 5-node
The double red violation may propagate to the grandparent u

4

6

7z
v

2 4 6 7

2
w 4

6

7z
v

6 7

2
w

… 4 …

2

Red-Black Trees 10© 2004 Goodrich, Tamassia

Analysis of Insertion
Recall that a red-black tree
has O(log n) height
Step 1 takes O(log n) time
because we visit O(log n)
nodes
Step 2 takes O(1) time
Step 3 takes O(log n) time
because we perform

O(log n) recolorings, each
taking O(1) time, and
at most one restructuring
taking O(1) time

Thus, an insertion in a red-
black tree takes O(log n) time

Algorithm insert(k, o)

1. We search for key k to locate
the insertion node z

2. We add the new entry (k, o) at
node z and color z red

3. while doubleRed(z)
if isBlack(sibling(parent(z)))

z ← restructure(z)
return

else { sibling(parent(z) is red }
z ← recolor(z)

Red-Black Trees 11© 2004 Goodrich, Tamassia

Deletion
To perform operation remove(k), we first execute the deletion
algorithm for binary search trees
Let v be the internal node removed, w the external node removed,
and r the sibling of w

If either v of r was red, we color r black and we are done
Else (v and r were both black) we color r double black, which is a
violation of the internal property requiring a reorganization of the tree

Example where the deletion of 8 causes a double black:

6

3 8

4

v

r w

6

3

4

r

Red-Black Trees 12© 2004 Goodrich, Tamassia

Remedying a Double Black
The algorithm for remedying a double black node w with sibling
y considers three cases
Case 1: y is black and has a red child

We perform a restructuring, equivalent to a transfer , and we are
done

Case 2: y is black and its children are both black
We perform a recoloring, equivalent to a fusion, which may
propagate up the double black violation

Case 3: y is red
We perform an adjustment, equivalent to choosing a different
representation of a 3-node, after which either Case 1 or Case 2
applies

Deletion in a red-black tree takes O(log n) time

Red-Black Trees 13© 2004 Goodrich, Tamassia

Red-Black Tree Reorganization
remedy double redInsertion

double red removed
or propagated upsplitrecoloring

double red removedchange of 4-node
representationrestructuring

result(2,4) tree actionRed-black tree action

remedy double blackDeletion

restructuring or
recoloring follows

change of 3-node
representationadjustment

double black removed
or propagated upfusionrecoloring

double black removedtransferrestructuring

result(2,4) tree actionRed-black tree action

