

Splay Trees do Rotations after Every Operation (Even Search) ● new operation: *splay* ■ splaying moves a node to the root using rotations ■ right rotation ■ makes the left child x of a node y into y's parent; y becomes the right child of x ■ a right rotation about y ■ a right rotation about y ■ a left rotation about x ■ a left rotation about x

Splay Trees

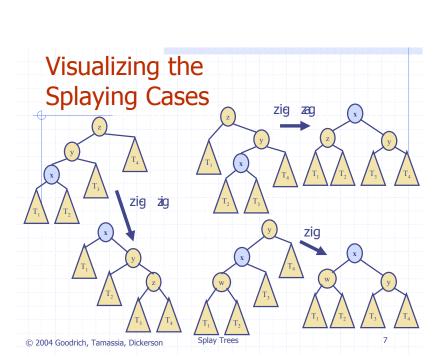
(structure of tree above x

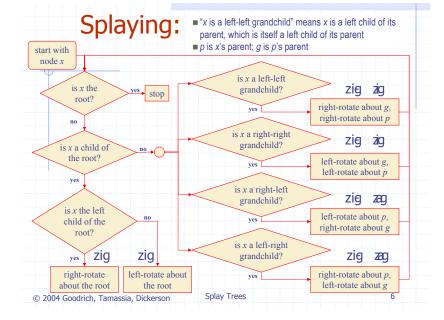
is not modified)

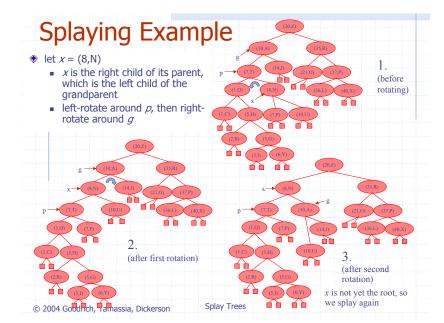
(structure of tree above y

© 2004 Goodrich, Tamassia, Dickerson

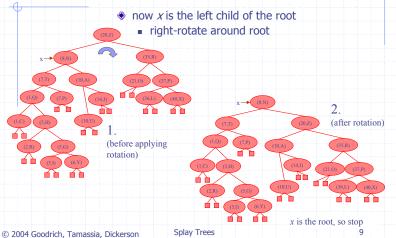
is not modified)







Splaying Example, Continued now x is the left child of the root right-rotate around root



Splay Tree Definition

- a splay tree is a binary search tree where a node is splayed after it is accessed (for a search or update)
 - deepest internal node accessed is splayed
 - splaying costs O(h), where h is height of the tree - which is still O(n) worst- ase
 - O(h) rotations, each of which is O(1)

Example Result of Splaying before tree might not be more balanced e.g. splay (40,X) before, the depth of the shallowest leaf 3 and the deepest is 7 • after, the depth of shallowest leaf is 1 and deepest is 8 after second after first splay splay Splay Trees 10 © 2004 Granich Tamassia, Dickerson

Splay Trees & Ordered **Dictionaries**

which nodes are splayed after each operation?

method	splay node
find(k)	if key found, use that node
	if key not found, use parent of ending external node
insert(k,v)	use the new node containing the entry inserted
remove(k)	use the parent of the internal node that was actually removed from the tree (the parent of the node that the removed item was swapped with)

12

Amortized Analysis of Splay Trees

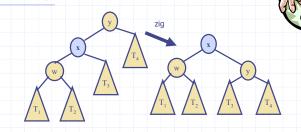
- Running time of each operation is proportional to time for splaying.
- Define rank(v) as the logarithm (base 2) of the number of nodes in subtree rooted at v.
- Thus, cost for playing a node at depth d = \$d.
- Imagine that we store rank(v) cyber- ddlars at each node v of the splay tree (just for the sake of analysis).

© 2004 Goodrich, Tamassia, Dickerson

Splay Trees

13

Cost per zig



Doing a zig at x costs at most rank'(x)- rank(x):
 cost = rank'(x) + rank'(y)- rank(y)- rank(x)
 rank'(x)- rank(x).

© 2004 Goodrich, Tamassia, Dickerson

Splay Trees

4

Cost per zig-zig and zig-zag

- Doing a zig ig or zig zag at x costs at most 3(rank'(x)- rank(x))- 2.
 - Proof: See Proposition 9.2, Page 440.

Cost of Splaying

- Cost of splaying a node x at depth d of a tree rooted at r:
 - at most 3(rank(r) rank(x)) d + 2:
 - Proof: Splaying x takes d/2 splaying substeps:

$$\cos t \le \sum_{i=1}^{d/2} \cos t_i$$

© 2004 Goodrich, Tamassia, Dickerson

$$\leq \sum_{i=1}^{d/2} (3(\operatorname{rank}_{i}(x) - \operatorname{rank}_{i-1}(x)) - 2) + 2$$

$$= 3(\operatorname{rank}(r) - \operatorname{rank}_{0}(x)) - 2(d/d) + 2$$

$$\leq 3(\operatorname{rank}(r) - \operatorname{rank}(x)) - d + 2.$$

Performance of Splay Trees

- Recall: rank of a node is logarithm of its size.
- Thus, amortized cost of any splay operation is O(log n).
- In fact, the analysis goes through for any reasonable definition of rank(x).
- This implies that splay trees can actually adapt to perform searches on frequentlyrequested items much faster than O(log n) in some cases. (See Proposition 9.4 and 9.5.)

© 2004 Goodrich, Tamassia, Dickerson

Splay Trees

1/

