Splay Trees

\qquad

Splay Trees are

 Binary Search Trees

Searching in a Splay Tree:

 Starts the Same as in a BST- Search proceeds down the tree to found item or an external node.
- Example: Search for time with key 11.

Example Searching in a BST, continued

- search for key 8, ends at an internal node.

Splay Trees do Rotations after Every Operation (Even Search)

- new operation: splay
- splaying moves a node to the root using rotations

- makes the left child x of a node y into y 's parent; y becomes the right child of x

- left rotation

- makes the right child y of a node x into x 's parent; x becomes the left child of y

Splay Trees

Visualizing the Splaying Cases

 parent, which is itself a left child of its parent

Splaying Example

- x is the right child of its parent, which is the left child of the grandparent
- left-rotate around p, then rightrotate around g

Splaying Example, Continued

Splay Tree Definition

- a splay tree is a binary search tree where a node is splayed after it is accessed (for a search or update)
- deepest internal node accessed is splayed
- splaying costs $O(h)$, where h is height of the tree
- which is still $\mathrm{O}(\mathrm{n})$ worst- case
- $\mathrm{O}(\mathrm{h})$ rotations, each of which is $\mathrm{O}(1)$

Example Result of Splaying

Splay Trees \& Ordered Dictionaries

- which nodes are splayed after each operation?

method	splay node
find(k)	if key found, use that node if key not found, use parent of ending external node
insert(k,v)	use the new node containing the entry inserted
remove(k)	use the parent of the internal node that was actually removed from the tree (the parent of the node that the removed item was swapped with)

Amortized Analysis of Splay Trees

- Running time of each operation is proportional to time for splaying.
- Define rank(v) as the logarithm (base 2) of the number of nodes in subtree rooted at v .
- Costs: zig = \$1, zig zig = \$2, zig zg = \$2.
- Thus, cost for playing a node at depth d = \$d.
- Imagine that we store rank(v) cyber- dollars at each node v of the splay tree (just for the sake of analysis).

Cost per zig-zig and zig-zag

- Doing a zig ig or zig zag at x costs at most 3(rank'(x)- $\operatorname{rank}(x))-2$.
- Proof: See Proposition 9.2, Page 440.

Cost per zig

- Doing a zig at x costs at most $\operatorname{rank}^{\prime}(x)-\quad \operatorname{rank}(x)$:
- cost $=\operatorname{rank}^{\prime}(x)+\operatorname{rank}^{\prime}(y)-\operatorname{rank}(y)-\operatorname{rank}(x)$

$$
\leq \operatorname{rank}^{\prime}(x)-\operatorname{rank}(x)
$$

Cost of Splaying

- Cost of splaying a node x at depth d of a tree rooted at r:
- at most 3(rank(r)- $\operatorname{rank}(x))-d+2$:
- Proof: Splaying x takes $d / 2$ splaying substeps:

$$
\begin{aligned}
\operatorname{cost} & \leq \sum_{i=1}^{d / 2} \operatorname{cost}_{i} \\
& \leq \sum_{i=1}^{d / 2}\left(3\left(\operatorname{rank}_{i}(x)-\operatorname{rank}_{i-1}(x)\right)-2\right)+2 \\
& =3\left(\operatorname{rank}(r)-\operatorname{rank}_{0}(x)\right)-2(d / d)+2 \\
& \leq 3(\operatorname{rank}(r)-\operatorname{rank}(x))-d+2 .
\end{aligned}
$$

Performance of Splay Trees

Recall: rank of a node is logarithm of its size.

- Thus, amortized cost of any splay operation is $\mathbf{O}(\log n)$.
- In fact, the analysis goes through for any reasonable definition of $\operatorname{rank}(x)$.
- This implies that splay trees can actually adapt to perform searches on frequentlyrequested items much faster than $\mathrm{O}(\log \mathrm{n})$ in some cases. (See Proposition 9.4 and 9.5.)

