Trees

Tree Terminology

- Root: node without parent (A)
- Internal node: node with at least one child (A, B, C, F)

Subtree: tree consisting of External node (a.k.a. leaf): node without children (E, I, J, K, G, H, D)

- Ancestors of a node: parent, grandparent, grand-grandparent, etc.
- Depth of a node: number of ancestors
- Height of a tree: maximum depth of any node (3)
- Descendant of a node: child, grandchild, grand-grandchild, etc.
a node and its descendants

Preorder Traversal

- A traversal visits the nodes of a tree in a systematic manner
- In a preorder traversal, a node is visited before its descendants
- Application: print a structured document

```
Algorithm preOrder(v)
    visit(v)
    for each child w}\mathrm{ of }\boldsymbol{v preorder (w)
```


Binary Trees (§ 6.3)

- A binary tree is a tree with the following properties:
- Each internal node has at most two children (exactly two for proper binary trees)
- The children of a node are an ordered pair
- We call the children of an internal node left child and right child
- Alternative recursive definition: a binary tree is either
- a tree consisting of a single node, or
- a tree whose root has an ordered pair of children, each of which is a binary tree
- Applications:
- arithmetic expressions
- decision processes
- searching

Postorder Traversal

- In a postorder traversal, a node is visited after its descendants
- Application: compute space used by files in a directory and its subdirectories

© 2004 Goodrich, Tamassia
Trees

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
- internal nodes: operators
- external nodes: operands
- Example: arithmetic expression tree for the expression $(2 \times(a-1)+(3 \times b))$

Decision Tree

- Binary tree associated with a decision process
- internal nodes: questions with yes/no answer
- external nodes: decisions
- Example: dining decision

Properties of Proper Binary Trees

BinaryTree ADT (§ 6.3.1)

* The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
- Additional methods:
- position left(p)
- position right(p)
- boolean hasLeft(p)
- boolean hasRight(p)
- Update methods may be defined by data structures implementing the BinaryTree ADT

Inorder Traversal

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
- $x(v)=$ inorder rank of v
- $y(v)=$ depth of v

Algorithm inOrder(v)
if hasLeft (v) inOrder (left (v))
visit(v)
if hasRight (v) inOrder (right (v))

Print Arithmetic Expressions

Evaluate Arithmetic Expressions

- Specialization of an inorder traversal
- print operand or operator when visiting node
- print "(" before traversing left subtree
- print ")" after traversing right subtree

Algorithm printExpression(v)
if hasLeft (v) print("(") inOrder (left(v))
print(v.element ())
if hasRight (v) inOrder $(\operatorname{right}(v))$ print (")")
$((2 \times(a-1))+(3 \times b))$

Euler Tour Traversal

- Generic traversal of a binary tree
- Includes a special cases the preorder, postorder and inorder traversals
- Walk around the tree and visit each node three times:
- on the left (preorder)
- from below (inorder)
- on the right (postorder)

Template Method Pattern

- Generic algorithm that can be specialized by redefining certain steps
- Implemented by means of an abstract Java class
- Visit methods that can be redefined by subclasses
* Template method eulerTour
- Recursively called on the left and right children
- A Result object with fields leftResult, rightResult and finalResult keeps track of the output of the recursive calls to eulerTour
public abstract class EulerTour \{ protected BinaryTree tree protected void visitExternal(Position p, Result r) \{ \} protected void visitLeff(Position p, Result r) \{\} protected void visitBelow(Position p, Result r) \{ \} protected void visitRight(Position p, Result r) \{\}
protected Object eulerTour(Position p) \{
Result r = new Result();
if tree.isExternal(p) $\{$ visitExternal(p, r); \} else \{
visitLeft(p, r);
r.leftResult = eulerTour(tree.left(p));
visitBelow(p, r);
r.rightResult = eulerTour(tree.right(p));
visitRight(p, r);
return r.finalResult;

Algorithm evalExpr(v)
if isExternal (v)
return v.element ()
else
$x \leftarrow$ evalExpr(leftChild (v))
$y \leftarrow$ evalExpr $($ rightChild (v))
$\diamond \leftarrow$ operator stored at v
return $x \diamond y$

Specializations of EulerTour

- We show how to specialize class EulerTour to evaluate an arithmetic
expression
- Assumptions
- External nodes store Integer objects
- Internal nodes store Operator objects supporting method operation (Integer, Integer)
public class Evaluate Expression
extends EulerTour \{
protected void visitExternal(Position p, Result r) \{ r.finalResult = (Integer) p.element();
\}
protected void visitRight(Position p, Result r) \{ Operator op = (Operator) p.element(); r.finalResult $=o p . o p e r a t i o n(~$
(Integer) r.leftResult,
(Integer) r.rightResult
);
\}
J
\}

Linked Structure for Trees

- A node is represented by an object storing
- Element
- Parent node
- Sequence of children nodes
- Node objects implement the Position ADT

© 2004 Goodrich, Tamassia

Trees

Linked Structure for Binary Trees

- A node is represented by an object storing
- Element
- Parent node
- Left child node
- Right child node
- Node objects implement the Position ADT

Trees

Array-Based Representation of Binary Trees

- nodes are stored in an array

- let rank(node) be defined as follows: - $\operatorname{rank}($ root $)=1$
- if node is the left child of parent(node), $\operatorname{rank}($ node $)=2{ }^{*} \operatorname{rank}($ parent(node) $)$
- if node is the right child of parent(node), $\operatorname{rank}($ node $)=2^{*} \operatorname{rank}($ parent(node) $)+1$

