
First steps and detailed concepts

Java Persistence APIJava Persistence API
Mini BookMini Book

Hebert Coelho
Byron Kiourtzoglou

JPA Mini Book www.javacodegeeks.com

Table of Contents
Reasons that led to the creation of JPA .. 3
What is JPA? What is a JPA Implementation? ... 4
What is the persistence.xml file used for? And its configurations? ... 5
Entity definitions. What are the Logic and Physical annotations? ... 8
Id Generation: Definition, using Identity or Sequence .. 10

Identity ... 11
Sequence .. 12

Id Generation: TableGenerator and Auto .. 13
TableGenerator .. 13
Auto ... 15

Simple Composite Key .. 15
@IdClass ... 15
@Embeddable ... 18

Complex Composite Key ... 20
How to get an EntityManager .. 24
Mapping two or more tables in one entity ... 25
Mapping Hierarchy: MappedSuperclass .. 25
Mapping Hierarchy: Single Table .. 27
Mapping Hierarchy: Joined .. 29
Mapping Hierarchy: Table per Concrete Class .. 31
Pros/Cons of each hierarchy mapping approach .. 33
Embedded Objects ... 34
ElementCollection – how to map a list of values into a class .. 35
OneToOne unidirectional and bidirectional ... 36

Unidirectional .. 36
Bidirectional .. 38

There is no such “auto relationship” .. 38
OneToMany/ManyToOne unidirectional and bidirectional ... 39
There is no such “auto relationship” .. 40
ManyToMany unidirectional and bidirectional .. 40
There is no such “auto relationship” .. 43
ManyToMany with extra fields .. 43
How the Cascade functionality works? How should a developer use the OrphanRemoval? Handling the
org.hibernate.TransientObjectException .. 46

OrphanRemoval ... 53
How to delete an entity with relationships. Clarify which relationships are raising the exception 54
Creating one EntityManagerFactory by application .. 55
Understanding how the Lazy/Eager option works ... 56
Handling the “cannot simultaneously fetch multiple bags” error .. 57

2 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

Reasons that led to the creation of JPA
One of the problems of Object Orientation is how to map the objects as the database requires. It is possible to have

a class with the name Car but its data is persisted in a table named TB_CAR. The table name is just the beginning

of the problem, what if the Car class has the attribute “name” but in the database you find the column

STR_NAME_CAR?

The basic Java framework to access the database is JDBC. Unfortunately, with JDBC, a lot of hand work is needed

to convert a database query result into Java classes.

In the code snippet bellow we demonstrate how to transform a JDBC query result into Car objects:

import java.sql.*;

import java.util.LinkedList;
import java.util.List;

public class MainWithJDBC {
 public static void main(String[] args) throws Exception {
 Class.forName("org.hsqldb.jdbcDriver");

 Connection connection = // get a valid connection

 Statement statement = connection.createStatement();

 ResultSet rs = statement.executeQuery("SELECT \"Id\", \"Name\" FROM \"Car\"");

 List<Car> cars = new LinkedList<Car>();

 while(rs.next()){
 Car car = new Car();
 car.setId(rs.getInt("Id"));
 car.setName(rs.getString("Name"));
 cars.add(car);
 }

 for (Car car : cars) {
 System.out.println("Car id: " + car.getId() + " Car Name: " + car.getName());
 }

 connection.close();
 }
}

As you can understand there is a lot of boilerplate code involved using this approach. Just imagine the Car class

the have not two but thirty attributes… To make things even worse, imagine a class with 30 attributes and with a

relationship to another class that has 30 attributes also e.g. a Car class may maintain a list of Person classes

3 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

representing the drivers of the specific car where the Person class may have 30 attributes to be populated.

Other disadvantages of JDBC is its portability. The query syntax will change from one database to another. For

example with Oracle database the command ROWNUM is used to limit the amount of returned lines, whereas with

SqlServer the command is TOP.

Application portability is a problematic issue when database native queries are used. There are several solutions to

this kind of problem, e.g. a separate file with all query code could be stored outside the application deployable file.

With this approach for each database vendor a sql specific file would be required.

It is possible to find other problems when developing with JDBC like: update a database table and its relationships,

do not leave any orphans records or an easy way to use hierarchy.

What is JPA? What is a JPA Implementation?
JPA was created as a solution to the problems mentioned earlier.

JPA allows us to work with Java classes as it provides a transparent layer to each database specific details; JPA will

do the hard work of mapping table to class structure and semantics for the developer.

An easy definition to JPA is: “A group of specifications (a lot of texts, regularizations and Java Interfaces) to define

how a JPA implementation should behave”. There are many JPA implementations available both free and paid, e.g.

Hibernate, OpenJPA, EclipseLink and the “new born” Batoo etc.

Most JPA implementations are free to add extra codes, annotations that are not present in the JPA specification, but

must conform to the JPA specification scemantics.

The main JPA feature to address application portability is the ability to map database tables into the classes. In the

following sections we will demonstrate how it is possible to map the column of a table into a Java class field

regardless of the names of both the batabase column and Java class field.

JPA created a database language named JPQL to perform database queries. The advantage of JPQL is that the

query can be executed in all databases.

SELECT id, name, color, age, doors FROM Car

The query above could be translated to the JPQL below:

4 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

SELECT c FROM Car c

Notice that the result of the query above is “c”, that means, a car object and not the fields/values found in the

database table. JPA will create the object automatically.

If you want to see several ways to run a database query with JPA click here.

JPA will be responsible to translate the JPQL query to the database native query; the developer will not need to

worry about which is the required sql database syntax.

What is the persistence.xml file used for? And its
configurations?

The persistence.xml file is responsible for all JPA evironment configuration; it can hold database, application and

JPA implementation specific configuration.

In the persistence.xml code presented here we use the EclipseLink JPA implementation specific configuration, but

the concept and the theory applied to the Java classes in this post can be applied when using any JPA

implementation framewrok available.

The persistence.xml file must be located in a META-INF folder in the same path as the Java classes. Below is a

picture that shows where the file should be placed:

This picture is valid when using Eclipse IDE. For Netbeans it is necessary to check its documentation as of where

the correct place to put the file is.

If you got the error message: “Could not find any META-INF/persistence.xml file in the classpath” here are some

tips that you can check:

•Open the generated WAR file and check if the persistence.xml is located at “/WEB-

INF/classes/META-INF/”. If the file is automatically generated and is not there your error is at the

WAR creation, you need to put the persistence.xml file where the IDE expects. If the artifact

5 of 60

http://www.javacodegeeks.com/
http://uaihebert.com/?p=1274

JPA Mini Book www.javacodegeeks.com

creation is done manually check the creation script (ant, maven).

•If your project is deployed with EAR file check if the persistence.xml file is in the EJB jar root. If

the file is automatically generated and is not there your error is at the WAR creation, you need to

put the persistence.xml file where the IDE expects. If the artifact creation is manually check the

creation script (ant, maven).

•If your project is a JSE project (desktop) you should check if the file is not in the folder “META-

INF”. As default behavior the JPA will search in the JAR root for the folder and file: “/META-

INF/persistence.xml”.

•Check if the file has the name: “persistence.xml”. The file must have the name with all letters in

lowercase.

If JPA cannot find the file the error above will be displayed. As a general rule, it is a good practice to put the file as

displayed above.

Check below a sample of persistence.xml:

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="2.0"
 xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">

 <persistence-unit name="MyPU" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>

 <class>page20.Person</class>
 <class>page20.Cellular</class>
 <class>page20.Call</class>
 <class>page20.Dog</class>

 <exclude-unlisted-classes>true</exclude-unlisted-classes>

 <properties>
 <property name="javax.persistence.jdbc.driver" value="org.hsqldb.jdbcDriver" />
 <property name="javax.persistence.jdbc.url" value="jdbc:hsqldb:mem:myDataBase" />
 <property name="javax.persistence.jdbc.user" value="sa" />
 <property name="javax.persistence.jdbc.password" value="" />
 <property name="eclipselink.ddl-generation" value="create-tables" />
 <property name="eclipselink.logging.level" value="FINEST" />
 </properties>
 </persistence-unit>

 <persistence-unit name="PostgresPU" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>

 <class>page26.Car</class>
 <class>page26.Dog</class>

6 of 60

http://www.javacodegeeks.com/
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd
http://java.sun.com/xml/ns/persistence
http://www.w3.org/2001/XMLSchema-instance
http://java.sun.com/xml/ns/persistence

JPA Mini Book www.javacodegeeks.com

 <class>page26.Person</class>

 <exclude-unlisted-classes>true</exclude-unlisted-classes>

 <properties>
 <property name="javax.persistence.jdbc.url" value="jdbc:postgresql://localhost/JpaRelationships"
/>
 <property name="javax.persistence.jdbc.driver" value="org.postgresql.Driver" />
 <property name="javax.persistence.jdbc.user" value="postgres" />
 <property name="javax.persistence.jdbc.password" value="postgres" />
 <!-- <property name="eclipselink.ddl-generation" value="drop-and-create-tables" /> -->
 <property name="eclipselink.ddl-generation" value="create-tables" />
 <!-- <property name="eclipselink.logging.level" value="FINEST" /> -->
 </properties>
 </persistence-unit>
</persistence>

About the code above:

•<persistence-unit name=”MyPU” => with this configuration it is possible to define the

Persistence Unit name. The Persistence Unit can be understood as the JPA universe of your

application. It contains information about all classes, relationships, keys and others

configurations all relating the database to your application. It is possible to add more than one

Persistence Unit at the same persistence.xml file as displayed in the code above.

•transaction-type=”RESOURCE_LOCAL” => Define the transaction type. Two values are allowed

here: RESOURCE_LOCAL and JTA. For desktop applications RESOURCE_LOCAL should be use; for

web application both values can be used, the correct value depends on the application design.

•<provider>org.eclipse.persistence.jpa.PersistenceProvider</provider> => Defines the JPA

implementation provider. The provider is the application JPA implementation. If your application

is using Hibernate, the provider value should be “org.hibernate.ejb.HibernatePersistence” and

for OpenJPA “org.apache.openjpa.persistence.PersistenceProviderImpl”.

•<class></class> => Used to declare the Java classes. In a JEE/JSE usually this is not required;

e.g. for a Hibernate desktop application there is no need to declare the classes with this tags,

but with EclipseLink and OpenJPA requires the presence of the class tag.

•<exclude-unlisted-classes>true</exclude-unlisted-classes> => this configurations defines that

if a class is not listed in the persistence.xml it should not be handled as an entity (we will see

more about entity in the next page) in the Persistence Unit. This configuration is very useful for

applications with more than one Persistence Units, where an Entity should appear in one

database but not in the other.

•It is possible to comment a code use the tag <!– –>

•<properties> => It is possible to add specific JPA implementations configurations. Values like

driver, password and user it is normal to find it to all implementations; usually these values are

written in the persistence.xml file for a RESOUCE_LOCAL application. To JTA applications the

datasources are used by the containers. A datasource can be specified with the tags <jta-data-

7 of 60

http://www.javacodegeeks.com/
postgresql://localhost/JpaRelationships

JPA Mini Book www.javacodegeeks.com

source></jta-data-source><non-jta-data-source></non-jta-data-source>. Some JBoss versions

require the data source declaration to be present even if the connection is local. Two

configurations are worth mentioning:

Configurations Implementation Used for

eclipselink.ddl-generation EclipseLink Will activate the automatically
database table creation, or
just validate the database
schema against the JPA
configuration.

hibernate.hbm2ddl.auto Hibernate

openjpa.jdbc.SynchronizeMappings OpenJPA

eclipselink.logging.level EclipseLink Will define the LOG level of
the JPA implementation.

org.hibernate.SQL.level=FINEST
org.hibernate.type.level=FINEST

Hibernate

openjpa.Log OpenJPA

On the internet you will find the allowed values to each implementation.

Entity definitions. What are the Logic and Physical
annotations?

For JPA to correctly map database tables into Java classes the concept of Entity was created. An Entity must be

created to support the same database table structure; thus JPA handles table data modification through an entity.

For a Java class to be considerate an Entity it must follow the rules below:

•To be annotated with @Entity

•A public constructor without arguments

•The Java class will need to have a field with the @Id annotation

The class below follows all the requirements to be considerate an entity:

import javax.persistence.Entity;
import javax.persistence.Id;

@Entity
public class Car {

8 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

 public Car(){

 }

 public Car(int id){
 this.id = id;
 }

 // Just to show that there is no need to have get/set when we talk about JPA Id
 @Id
 private int id;

 private String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

About the code above:

•The class has the annotation @Entity above its name

•There is an attribute considered the id of the class that is annotated with @Id. Every entity must

have an id. Usually this field is a sequential integer field, but it can be a String or other allowed

values

•Notice that there is no get/set for the id attribute. For JPA is concidered that an entity's id is

immutable, so there is no need to edit the id value.

•The presence of a public constructor without arguments is mandatory. Other constructors may

be added

As shown in the code snippet above we only used two annotations, one to define an entity and another to declare

the "id" field; by default JPA will look for a table named CAR in the database with columns named ID and NAME. By

default JPA will use the class name and the class attribute names to find the tables and its structures.

According to the book “Pro JPA 2” we can define the JPA annotations in two ways: Logical annotations and Physical

annotations. The physical annotations will map the configuration of the database into the class. The logical

annotations will define the application modeling. Check the code below:

import java.util.List;

import javax.persistence.*;

@Entity
@Table(name = "TB_PERSON_02837")

9 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

public class Person {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;

 @Basic(fetch = FetchType.LAZY)
 @Column(name = "PERSON_NAME", length = 100, unique = true, nullable = false)
 private String name;

 @OneToMany
 private List<Car> cars;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

In the code snippet above the following annotations are shown: @Entity, @Id and @OneToMany (we will see about

this annotation later); these are considered logical annotations. Notice that these annotations do not define

anything related to database, but define how a Java class will behave as an Entity.

Additionally in the code above we demonstrate another set of annotations: @Table, @Column and @Basic. These

annotations will create the relationship between the database table and the entity. It is possible to define the table

name, column name and other information regarding the database. This kind of annotations are known as Physical

annotations, it is their job to “connect” the database to the JPA code.

Its out of the scope of this mini book to present every annotation supported by JPA, but it is very easy to find this

information on the internet; e.g.: @Column(name = “PERSON_NAME”, length = 100, unique = true, nullable = false).

The physical annotations are the easier to understand because it looks like database configuration.

Id Generation: Definition, using Identity or Sequence
As said in previous chapters, every entity must have an id. JPA has the option to automatically generate the entity

id.

There are three options for automatic id generation:

•Identity

•Sequence

•TableGenerator

10 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

We must have in mind that every database has its own id generation mechanism. Oracle and Postgres databases

use the Sequence approach, SqlServer and MySQL use the Identity approach. It is not possible to use an id

generation approach in a server when the server does not support it.

The following Java types are allowed to be used for an id attribute: byte/Byte, int/Integer, short/Short, long/Long,

char/Character, String, BigInteger, java.util.Date and java.sql.Date.

Identity

This is the simplest id generation approach. Just annotate the id field like below:

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;

@Entity
public class Person {

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private int id;

 private String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

The database controls the ID generation, JPA does not act on the id at all. Thus in order to retrieve the id from the

databse an entity needs to be persisted first, and after the transaction commits, a query is executed so as to

retrieve the generated id for the specific entity. This procedure leads to a small performance degradation, but not

something troublesome.

The aforementioned id generation approach does not allow allocating ids in memory. We will examine what this ids

allocation means in the following chapters.

11 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

Sequence

The Sequence approach can be configured like below:

import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.SequenceGenerator;

@Entity
@SequenceGenerator(name = Car.CAR_SEQUENCE_NAME, sequenceName = Car.CAR_SEQUENCE_NAME, initialValue = 10,
allocationSize = 53)
public class Car {

 public static final String CAR_SEQUENCE_NAME = "CAR_SEQUENCE_ID";

 @Id
 @GeneratedValue(strategy = GenerationType.SEQUENCE, generator = CAR_SEQUENCE_NAME)
 private int id;

 private String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

About the code above:

•The @SequenceGenerator annotation will define that there will be a sequence in the database

with the specified name (sequenceName attribute). The same sequence could be shared

between entities but is not recomended. If we use the Car sequence in the House entity, the id

values in the tables would not be sequential; when the first car is persisted the id would be 1, if

another car is persisted the id would be 2; when the first house is persisted its id would be 3,

this will happen if the House entity uses the same sequence as the Car entity.

•The attribute "name = Car.CAR_SEQUENCE_NAME" defines the name of the sequence inside the

application. Sequence declaration should be done only once. All Entities that will use the same

sequence will just have to use the specific sequence name. That is why we assign the sequence

name value to a static attribute at the specific entity.

•The value "sequenceName = Car.CAR_SEQUENCE_NAME" reflects the sequence name at the

database level.

•The "initialValue = 10" defines the first id value of the sequence. A developer must be cautious

12 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

with this configuration; if after inserting the first row the application is restarted, JPA will try to

insert a new entity with the same value defined in the initialValue attribute. An error message

will be displayed indicating that the id is already in use.

• "allocationSize = 53" represents the amount of ids that JPA will store in cache. Works like this:

when the application is started JPA will allocate in memory the specified number of ids and will

share these values to each new persisted entity. In the code above, the ids would go from 10

(initialValue) up to 63 (initialValue + allocationSize). When the number of allocated ids ends JPA

will request from the database and allocate in memory 53 more ids. This act of allocating ids into

memory is a good approach to optimize server memory, since JPA will not need to trigger the

database with every insert so as to get the created id just like with the @Identity approach.

•The @GeneratedValue(strategy = GenerationType.SEQUENCE, generator =

CAR_SEQUENCE_NAME) annotation defines that the generation type as SEQUENCE and the name

of the generator.

Id Generation: TableGenerator and Auto

TableGenerator

The text below describes how the TableGenerator works:

•A table is used to store the id values

•This table has a column that will store the table name and the actual id value

•So far, this is the only Generation ID approach that allows database portability, without the

need of altering the id generation approach. Imagine an application that is running with Postgres

and uses a Sequence. If we were to use the same application with SqlServer too we would have

to create two distinct artifacts (WAR/JAR/EAR) of it, one for each database – since SqlServer doen

not support Sequences. With the TableGenerator approach the same artifact can be used for

both databases.

Check the code below to see how the TableGenerator approach can be used:

import javax.persistence.*;

@Entity
public class Person {

 @Id
 @TableGenerator(name="TABLE_GENERATOR", table="ID_TABLE", pkColumnName="ID_TABLE_NAME",
pkColumnValue="PERSON_ID", valueColumnName="ID_TABLE_VALUE")
 @GeneratedValue(strategy = GenerationType.TABLE, generator="TABLE_GENERATOR")

13 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

 private int id;

 private String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

The code above will use the table in the image below (it is possible to configure JPA to create the specific table

automatically, just add the needed configuration as presented in the section about persistence.xml):

About the code above:

•“name” => Is the TableGenerator id inside the application.

•“table” => Name of the table that will hold the values.

•“pkColumnName” => Column name that will hold the id name. In the code above the column

name “id_table_name” will be used.

•“valueColumnName” => Column name that will hold the id value.

•“pkColumnValue” => Table name that will persist in the table. The default value is the entity

name + id (entity attribute defined as id). In the code above will be PERSON_ID that is the same

value described above.

•initialValue, allocationSize => These options can be used in the @TableGenerator annotation

also. Check the Sequence approach section above to see how they should be used.

•It is possible to declare TableGenerator across different entities without the problem of loosing

sequenced ids (like the Sequence problem that we saw earlyer).

The best practice to use the table generator declartion is in an orm.xml file. This file is used to override JPA

configuration through annotations and is out of the scope of this mini book.

14 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

Auto

The Auto approach (automatically) allows JPA to choose an approach to use. This is the default value and can be

used like below:

@Id
@GeneratedValue(strategy = GenerationType.AUTO) // or just @GeneratedValue
private int id;

With the Auto approach any strategy can be used by JPA. JPA will choose between the 3 approaches discussed

earlyer.

Simple Composite Key
A simple key is when the id uses just one field. A simple key is used like below:

A composite key is needed when more than one attribute is required as an entity id. It is possible to find simple

composite key and complex composite key. With a Simple composite key use only plain Java attributes for the id

(e.g String, int, …). In the following sections we will disquas all about complex composite key semantics.

There are two ways to map a simple composite key, with @IdClass or @EmbeddedId.

@IdClass
Check the code below:

import javax.persistence.*;

@Entity
@IdClass(CarId.class)
public class Car {

 @Id
 private int serial;

 @Id
 private String brand;

15 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

 private String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public int getSerial() {
 return serial;
 }

 public void setSerial(int serial) {
 this.serial = serial;
 }

 public String getBrand() {
 return brand;
 }

 public void setBrand(String brand) {
 this.brand = brand;
 }
}

About the code above;

•@IdClass(CarId.class) => this annotation indicates that the CarId has inside of it the id

attributes found in the Car entity.

•All fields annotated with @Id must be found in the IdClass.

•It is possible to use the @GeneratedValue annotation with this kind of composite key. For

example in the code above it would be possible to use the @GeneratedValue with the "serial"

attribute.

Check below the CarId class code:

import java.io.Serializable;

public class CarId implements Serializable{

 private static final long serialVersionUID = 343L;

 private int serial;
 private String brand;

 // must have a default construcot
 public CarId() {

 }

16 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

 public CarId(int serial, String brand) {
 this.serial = serial;
 this.brand = brand;
 }

 public int getSerial() {
 return serial;
 }

 public String getBrand() {
 return brand;
 }

 // Must have a hashCode method
 @Override
 public int hashCode() {
 return serial + brand.hashCode();
 }

 // Must have an equals method
 @Override
 public boolean equals(Object obj) {
 if (obj instanceof CarId) {
 CarId carId = (CarId) obj;
 return carId.serial == this.serial && carId.brand.equals(this.brand);
 }

 return false;
 }
}

The class CarId has the fields listed as @Id in the Car entity.

To use a class as ID it must follow the rules below:

•A public constructor with no arguments must be found

•Implements the Serializable interface

•Overwrite the hashCode/equals method

To do a query against a database to find an entity given a simple composite key just do like below:

EntityManager em = // get valid entity manager

CarId carId = new CarId(33, "Ford");

Car persistedCar = em.find(Car.class, carId);

System.out.println(persistedCar.getName() + " - " + persistedCar.getSerial());

To use the find method it is necessary to provide the id class with the required information.

17 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

@Embeddable

The other approach to use the composite key is presented below:

import javax.persistence.*;

@Entity
public class Car {

 @EmbeddedId
 private CarId carId;

 private String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public CarId getCarId() {
 return carId;
 }

 public void setCarId(CarId carId) {
 this.carId = carId;
 }
}

About the code above:

•The id class was written inside the Car class.

•The @EmbeddedId is used to define the class as an id class.

•There is no need to use the @Id annotation anymore.

The class id will be like below:

import java.io.Serializable;

import javax.persistence.Embeddable;

@Embeddable
public class CarId implements Serializable{

 private static final long serialVersionUID = 343L;

 private int serial;
 private String brand;

18 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

 // must have a default construcot
 public CarId() {

 }

 public CarId(int serial, String brand) {
 this.serial = serial;
 this.brand = brand;
 }

 public int getSerial() {
 return serial;
 }

 public String getBrand() {
 return brand;
 }

 // Must have a hashCode method
 @Override
 public int hashCode() {
 return serial + brand.hashCode();
 }

 // Must have an equals method
 @Override
 public boolean equals(Object obj) {
 if (obj instanceof CarId) {
 CarId carId = (CarId) obj;
 return carId.serial == this.serial && carId.brand.equals(this.brand);
 }

 return false;
 }
}

About the code above:

•The @Embeddable annotation allows the class to be used as id.

•The fields inside the class will be used as ids.

To use a class as ID it must follow the rules below:

•A public constructor with no arguments must be found

•Implements the Serializable interface

•Overwrite the hashCode/equals method

It is possible to do queries with this kind of composite key just like the @IdClass presented above.

19 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

Complex Composite Key
A complex composite key is composed of other entities – not plain Java attributes.

Imagine an entity DogHouse where it uses the Dog as the id. Take a look at the code below:

import javax.persistence.*;

@Entity
public class Dog {
 @Id
 private int id;

 private String name;

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

import javax.persistence.*;

@Entity
public class DogHouse {

 @Id
 @OneToOne
 @JoinColumn(name = "DOG_ID")
 private Dog dog;

 private String brand;

 public Dog getDog() {
 return dog;
 }

 public void setDog(Dog dog) {
 this.dog = dog;
 }

 public String getBrand() {

20 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

 return brand;
 }

 public void setBrand(String brand) {
 this.brand = brand;
 }
}

About the code above:

•The @Id annotation is used in the entity DogHouse to inform JPA that the DogHouse will have

the same id as the Dog.

•We can combine the @Id annotation with the @OneToOne annotation to dictate that there is an

explicit relationship between the classes. More information about the @OneToOne annotation

will be available later on.

Imagine a scenario where it is required to access the DogHouse id without passing through the class Dog

(dogHouse.getDog().getId()). JPA has a way of doing it without the need of the Demeter Law pattern:

import javax.persistence.*;

@Entity
public class DogHouseB {

 @Id
 private int dogId;

 @MapsId
 @OneToOne
 @JoinColumn(name = "DOG_ID")
 private Dog dog;

 private String brand;

 public Dog getDog() {
 return dog;
 }

 public void setDog(Dog dog) {
 this.dog = dog;
 }

 public String getBrand() {
 return brand;
 }

 public void setBrand(String brand) {
 this.brand = brand;
 }

 public int getDogId() {
 return dogId;

21 of 60

http://www.javacodegeeks.com/
http://uaihebert.com/?p=61

JPA Mini Book www.javacodegeeks.com

 }

 public void setDogId(int dogId) {
 this.dogId = dogId;
 }
}

About the code above:

•There is an explicit field mapped with @Id.

•The Dog entity is mapped with the @MapsId annotation. This annotation indicates that JPA will

use the Dog.Id as the DogHouse.DogId (just like before); the dogId attribute will have the same

value as the dog.getId() and this value will be attributed at run time.

•dogId field does not need to be explicitely mapped to a database table column. When the

application starts JPA will attribute the dog.getId() to the dogId attribute.

To finish this subject, let us see one more topic. How can we map an entity id with more than one entities?

Check the code below:

import javax.persistence.*;

@Entity
@IdClass(DogHouseId.class)
public class DogHouse {

 @Id
 @OneToOne
 @JoinColumn(name = "DOG_ID")
 private Dog dog;

 @Id
 @OneToOne
 @JoinColumn(name = "PERSON_ID")
 private Person person;

 private String brand;

 // get and set
}

About the code above:

•Notice that both entities (Dog and Person) were annotated with @Id.

•The annotation @IdClass is used to indicate the need of a class to map the id.

import java.io.Serializable;

public class DogHouseId implements Serializable{

22 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

 private static final long serialVersionUID = 1L;

 private int person;
 private int dog;

 public int getPerson() {
 return person;
 }

 public void setPerson(int person) {
 this.person = person;
 }

 public int getDog() {
 return dog;
 }

 public void setDog(int dog) {
 this.dog = dog;
 }

 @Override
 public int hashCode() {
 return person + dog;
 }

 @Override
 public boolean equals(Object obj) {
 if(obj instanceof DogHouseId){
 DogHouseId dogHouseId = (DogHouseId) obj;
 return dogHouseId.dog == dog && dogHouseId.person == person;
 }

 return false;
 }
}

About the code above:

•The class has the same amount of attributes as the number of attributes in the class DogHouse

annotated with @Id

•Notice that the attributes inside the DogHouseId have the same name as the attributes inside

the DogHouse annotated with @Id. This is mandatory for JPA to correctly utilize id functionality.

For example If we named the Person type attribute inside the DogHouse class as

"dogHousePerson" the name of the Person type attribute inside the DogHouseId class would

have to change also to "dogHousePerson".

To use a class as ID it must follow the rules below:

•A public constructor with no arguments must be found

23 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

•Implements the Serializable interface

•Overwrite the hashCode/equals method

How to get an EntityManager
There are two ways to get an EntityManager. One is with injection and the other through a factory.

The easiest way to get an EntityManager is with injection, the container will inject the EntityManager. Below is how

the injection code works:

@PersistenceContext(unitName = "PERSISTENCE_UNIT_MAPPED_IN_THE_PERSISTENCE_XML")
private EntityManager entityManager;

It is needed to annotate the EntityManager field with: “@PersistenceContext(unitName =

“PERSISTENCE_UNIT_MAPPED_IN_THE_PERSISTENCE_XML”)”. The injection option will only work for JEE

applications, running inside applications servers like JBoss, Glassfish… To achieve the injection without problems

the persistence.xml must be in the right place, and must have (if needed) a datasource defined.

The EntityManager injection, until today, will work only with a server that supports an EJB container. Tomcat and

other WEB/Servlet only containers will not inject it.

When the application is a JSE (desktop) application or when a web application wants to handle the database

connection manually just use the code bellow:

EntityManagerFactory emf =
Persistence.createEntityManagerFactory("PERSISTENCE_UNIT_MAPPED_IN_THE_PERSISTENCE_XML");
EntityManager entityManager = emf.createEntityManager();

entityManager.getTransaction().begin();

// do something

entityManager.getTransaction().commit();
entityManager.close();

Notice that it is required to get an instance of the EntityManagerFactory first, which will be linked to a

PersistenceUnit created in the persistence.xml file. Through the EntityManagerFactory is possible to get an

instance of the EntityManager.

24 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

Mapping two or more tables in one entity
A class may have information in more than one table.

To map an Entity that has its data in more than one table, just do like below:

import javax.persistence.*;

@Entity
@Table(name="DOG")
@SecondaryTables({
 @SecondaryTable(name="DOG_SECONDARY_A", pkJoinColumns={@PrimaryKeyJoinColumn(name="DOG_ID")}),
 @SecondaryTable(name="DOG_SECONDARY_B", pkJoinColumns={@PrimaryKeyJoinColumn(name="DOG_ID")})
})
public class Dog {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;

 private String name;
 private int age;
 private double weight;

 // get and set

}

About the code above:

•The annotation @SecundaryTable is used to indicate at which table the Entity data can be

found. If the data is found in just one secondary table just the @SecundaryTable annotation is

enough.

•The annotation @SecundaryTables is used to group up several tables in one class. It groups

several @SecundaryTable annotations.

Mapping Hierarchy: MappedSuperclass
Sometimes is needed to share methods/attributes between classes; thus create a class hierarchy. In case the super

class – the one with the shared methods/attributes - is not an entity, it is required to be marked as

MappedSuperclass.

Check below how the MappedSuperclass concept can be applied:

import javax.persistence.MappedSuperclass;

@MappedSuperclass

25 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

public abstract class DogFather {
 private String name;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

}

@Entity
@Table(name = "DOG")
public class Dog extends DogFather {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;

 private String color;

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getColor() {
 return color;
 }

 public void setColor(String color) {
 this.color = color;
 }
}

About the code above:

•The DogFather class is annotated with the @MappedSuperclass annotation. With this annotation

all DogFather child classes will have its attributes persisted in the database, but DogFather will

not be mapped to a database table.

•A MappedSuperclass can be an abstract or a concrete class.

•The Dog class has the ID generator, only Dog is an entity. DogFather is not an entity.

Some recommendations about MappedSuperclass:

•A MappedSuperclass cannot be annotated with @Entity\@Table. It is not a class that will be

26 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

persisted. Its attributes/methods will be reflected in its child classes.

•It is always a good practice to create it as abstract. A MappedSuperclass will not be used in the

queries.

•Cannot be persisted, it is not an entity.

When do we use it?

If we do not need to use the super class in database queries, it would be a good idea to use a MappedSuperclass.

In the opposite case it is a good idea to use Entity hierarchy (see the following sections for details).

Mapping Hierarchy: Single Table
With JPA it is possible to find different approaches for persisting class hierarchies. In an Object Orientated language

like Java it is very easy to find hierarchy between classes that will have their data persisted.

The Single Table strategy will store all hierarchy data into one table. Check the code below:

import javax.persistence.*;

@Entity
@Table(name = "DOG")
@Inheritance(strategy = InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(name = "DOG_CLASS_NAME")
public abstract class Dog {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;

 private String name;

 // get and set
}

import javax.persistence.Entity;

@Entity
@DiscriminatorValue("SMALL_DOG")
public class SmallDog extends Dog {
 private String littleBark;

 public String getLittleBark() {
 return littleBark;
 }

 public void setLittleBark(String littleBark) {
 this.littleBark = littleBark;
 }

27 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

}

import javax.persistence.*;

@Entity
@DiscriminatorValue("HUGE_DOG")
public class HugeDog extends Dog {
 private int hugePooWeight;

 public int getHugePooWeight() {
 return hugePooWeight;
 }

 public void setHugePooWeight(int hugePooWeight) {
 this.hugePooWeight = hugePooWeight;
 }
}

About the code above:

•@Inheritance(strategy = InheritanceType.SINGLE_TABLE) => this annotation should be placed

in the highest place of the hierarchy (the “father” class), also known as “root”. This annotation

will define the hierarch pattern to be followed, in the annotation above the hierarchy mapping

strategy is set to Single Table.

•@DiscriminatorColumn(name = “DOG_CLASS_NAME”) => will define the name of the column

that will link a database table row to a class. Check in the image below how the data is stored.

•@DiscriminatorValue => Will set the value to be persisted in the column defined in the

annotation @DiscriminatorColumn. Check in the image below how the data is stored.

•Notice that the id is only defined in the root class. It is not allowed to a child class to declare an

id.

It is also possible to define the class discriminator column as integer:

•@DiscriminatorColumn(name = “DOG_CLASS_NAME”, discriminatorType =

DiscriminatorType.INTEGER) => define the field as integer

28 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

•@DiscriminatorValue(“1″) => The value to be persisted in the Entity must change, a number

will be persisted instead a text.

Mapping Hierarchy: Joined
When a hierarchy is using the Joined strategy each entity will have its data stored in the respective table. Instead of

using just one table for all hierarchy classes, each entity will have its own table.

Check the code below to see how Joined strategy can be used:

import javax.persistence.*;

@Entity
@Table(name = "DOG")
@Inheritance(strategy = InheritanceType.JOINED)
@DiscriminatorColumn(name = "DOG_CLASS_NAME")
public abstract class Dog {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;

 private String name;

 // get and set
}

import javax.persistence.*;

@Entity
@DiscriminatorValue("HUGE_DOG")
public class HugeDog extends Dog {
 private int hugePooWeight;

 public int getHugePooWeight() {
 return hugePooWeight;
 }

 public void setHugePooWeight(int hugePooWeight) {
 this.hugePooWeight = hugePooWeight;
 }
}

import javax.persistence.*;

@Entity
@DiscriminatorValue("SMALL_DOG")
public class SmallDog extends Dog {
 private String littleBark;

29 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

 public String getLittleBark() {
 return littleBark;
 }

 public void setLittleBark(String littleBark) {
 this.littleBark = littleBark;
 }
}

About the code above:

•The annotation @Inheritance(strategy = InheritanceType.JOINED) now has the Joined value.

•Check below how the tables are:

Dog table

HugeDog table

SmallDog table

30 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

Notice in the images above how the data is persisted to each table. Every entity has its information persisted

across unique tables; for this strategy JPA will use one table per entity regardlessthe entity being concrete or

abstract.

The Dog table maintains all data common to all the classes of the hierarchy; The Dog table maintains a column

indicating to which entity a row belongs to.

Mapping Hierarchy: Table per Concrete Class
The Table Per Concrete strategy will create a table per concrete entity. If an abstract entity is found in the hierarchy

this data will be persisted in the concrete children entities database tables.

Check the code below:

import javax.persistence.*;

@Entity
@Table(name = "DOG")
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public abstract class Dog {

 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private int id;

 private String name;

 // get and set
}

import javax.persistence.Entity;

@Entity
public class HugeDog extends Dog {
 private int hugePooWeight;

 public int getHugePooWeight() {
 return hugePooWeight;
 }

 public void setHugePooWeight(int hugePooWeight) {
 this.hugePooWeight = hugePooWeight;
 }
}

import javax.persistence.Entity;

@Entity

31 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

public class SmallDog extends Dog {
 private String littleBark;

 public String getLittleBark() {
 return littleBark;
 }

 public void setLittleBark(String littleBark) {
 this.littleBark = littleBark;
 }
}

About the code above:

•@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS) => define the hierarchy type as

table per class.

•The annotation @DiscriminatorColumn(name = “DOG_CLASS_NAME”) is not used in the children

classes anymore. Each concrete class will have its own data, JPA will not spread entity data

across tables.

•There is no need for the annotation @DiscriminatorValue for the same principal as above.

•Check below the database tables:

HugeDog Table

SmallDog Table

Notice that the attributes of the Dog entity are persisted in the HugeDog and SmallDog table.

32 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

Pros/Cons of each hierarchy mapping approach
Unfortunately there is no "better" approach to follow, each approach has its advantages and disadvantages. It is

necessary to analyze the pros/cons of each approach and decide which is better for the application:

Approach Pros Cons

SINGLE_TABLE

Easier to understand the
table model. Just one table is
required.

Cannot have “non null” fields.
Imagine that SmallDog has
the hairColor attribute non
null in the database. When
HugeDog get persisted an
error message from the
database will be receive, it
will inform that hairColor
cannot be null.

The entities attributes can be
found all in one table.

As general rule has a good
performance.

JOINED

Each entity will have its own
database table to store the
data.

The insert has a higher
performance cost. An insert
will be done to each database
table used in the hierarchy.
Imagine a hierarchy like C
extends B extends A, when C
is persisted 3 inserts will be
executed – one to each
mapped entity.

It will follow the OO patterns
applied in the application
code.

The join number executed in
the database queries will
increase in deeper
hierarchies.

TABLE_PER_CLASS

When the query is executed
to bring just one entity the
performance is better. A
database table will have only
one entity data.

Columns will be repeated.
The attributes found in the
abstract entities will repeated
in the concrete child entities.

When a query brings more
than one entity of the
hierarchy this query will have
a higher cost. It will be used
UNION or one query per
table.

33 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

Embedded Objects
Embedded Objects is a way to organize entities that have different data in the same table. Imagine a database

table that maintains "person" information (e.g. name, age) and address data (street name, house number, city etc).

Check the picture below:

It is possible to see data related to a person and their corresponding address also. Check the code below to see an

example of how to implement the Embedded Objects concept with the Person and Address entities:

import javax.persistence.*;

@Embeddable
public class Address {
 @Column(name = "house_address")
 private String address;

 @Column(name = "house_color")
 private String color;

 @Column(name = "house_number")
 private int number;

 public String getAddress() {
 return address;
 }

 public void setAddress(String address) {
 this.address = address;
 }

 // get and set
}

import javax.persistence.*;

@Entity
@Table(name = "person")
public class Person {

 @Id
 private int id;
 private String name;
 private int age;

34 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

 @Embedded
 private Address address;

 public Address getAddress() {
 return address;
 }

 public void setAddress(Address address) {
 this.address = address;
 }

 // get and set
}

About the code above:

•The @Embeddable annotation (Address class) allows the class to be used inside an entity,

notice that Address is not an entity. It is just a class to help organize the database data.

•A @Column annotation is used in the Address class to indicate the table database column

name.

•The @Embedded annotation (Person entity) indicates that JPA will map all the fields that are

inside the Address class as belonging to the Person entity.

•The Address class can be used in other entities. There are ways to override the @Column

annotation at runtime.

ElementCollection – how to map a list of values into a
class
Sometimes it is needed to map a list of values to an entity but those values are not entities themselves, e.g. person

has emails, dog has nicknames etc.

Check the code below that demonstrates this situation:

import java.util.List;
import java.util.Set;

import javax.persistence.*;

@Entity
@Table(name = "person")
public class Person {

 @Id
 @GeneratedValue
 private int id;

35 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

 private String name;

 @ElementCollection
 @CollectionTable(name = "person_has_emails")
 private Set<String> emails;

 @ElementCollection(targetClass = CarBrands.class)
 @Enumerated(EnumType.STRING)
 private List<CarBrands> brands;

 // get and set
}

public enum CarBrands {
 FORD, FIAT, SUZUKI
}

About the code above:

•Notice that two lists of data are used: Set<String>, List<CarBrand>. The @ElementCollection

annotation is used not with entities but with “simple” attributes (e.g. String, Enum etc).

•The @ElementCollection annotatio is used to allow an attribute to repeat itself several times.

•The @Enumerated(EnumType.STRING) annotation is used with the @ElementCollection

annotation. It defines how the enum will be persisted in the database, as String or as Ordinal

(click here to more information).

•@CollectionTable(name = “person_has_emails”) => configure JPA to which table the information

will be stored. When this annotation is not present JPA will create a database table named after

the class and attribute name by default. For example with the “List<CarBrand> brands”

attribute the database table would be named as "person_brands".

OneToOne unidirectional and bidirectional
It is very easy to find entities with relationships. A person has dogs, dogs have fleas, fleas has… hum… never

mind.

Unidirectional

A one to one relationship is the easiest to understand. Imagine that a Person has only one Cellular and only Person

will “see” the Cellular, the Cellular will not see Person. Check the image below:

36 of 60

http://www.javacodegeeks.com/
http://uaihebert.com/?p=44

JPA Mini Book www.javacodegeeks.com

Check how the Person class will be:

import javax.persistence.*;

@Entity
public class Person {

 @Id
 @GeneratedValue
 private int id;

 private String name;

 @OneToOne
 @JoinColumn(name="cellular_id")
 private Cellular cellular;

 // get and set
}

import javax.persistence.*;

@Entity
public class Cellular {

 @Id
 @GeneratedValue
 private int id;

 private int number;

 // get and set
}

About the code above:

•In a unidirectional relationship just one side of the relationship knows (“sees”) the other. Notice

that Person knows Cellular but Cellular does not know Person. It is possible to do

person.getCellular() but it is not possible to do cellular.getPerson().

•In the Person entity it is possible to use the annotation @OneToOne. This annotation indicates to

JPA that there is a relationship between the entities.

37 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

Every relationship needs one of the entities to be the “relationship owner”. Being the relationship owner is nothing

more than to have the foreign key in the database table. In the code above you can see that the annotation

@JoinColumn has been used. This annotation indicates that the foreign key will be located in the person database

table, making the Person entity owner of the relationship.

Bidirectional

To transform this relationship in a bidirectional one we just have to edit the Cellular entity. Check the class below:

import javax.persistence.*;

@Entity
public class Cellular {

 @Id
 @GeneratedValue
 private int id;

 private int number;

 @OneToOne(mappedBy="cellular")
 private Person person;

 // get and set
}

About the code above:

•The same annotation @OneToOne to the Person attribute is used in the Cellular entity.

•The parameter “mappedBy” was used in the @OneToOnea nnotation. This parameter indicates

that the entity Person is the owner of the relationship; the foreign key must exist inside the

person table, and not the Cellular table.

A developer must have in mind that for JPA to work in an optimal way it is a good practice to leave one side of the

relationship as the owner. If the annotation @OneToOne found in the Cellular entity was without the “mappedBy”

parameter, JPA would handle the Cellular entity as the owner of the relationship too. It is not a good idea to leave

either sides of a relationship without defining "mappedBy", or both with "mappedBy" setted.

There is no such “auto relationship”
For a Bidirectional relationship to work correctly it is necessary to do like below:

person.setCellular(cellular);
cellular.setPerson(person);

38 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

JPA uses the Java concept of class reference, a class must maintain a reference to another one if there will be a

join between them. JPA will not create a relationship automatically; to have the relationship in both sides it is

needed to do like above.

OneToMany/ManyToOne unidirectional and
bidirectional
The one to many relationship is used when an entity has a relationship with a list of other entities, e.g. a Cellular

may have several Calls but a Call can have only one Cellular. The OneToMany relationship is represented with a

list of values, there is more than one entity associate with it.

Let us start with the ManyToOne side:

import javax.persistence.*;

@Entity
public class Call {

 @Id
 @GeneratedValue
 private int id;

 @ManyToOne
 @JoinColumn(name = "cellular_id")
 private Cellular cellular;

 private long duration;

 // get and set
}

About the code above:

•The annotation @ManyToOne is used.

•Notice that annotation @JoinColumn is used to define who the owner of the relationship is.

•The @ManyToOne side will always be the owner of the relationship. There is no way of using the

mappedBy attribute inside the @ManyToOne annotation.

To do a bidirectional relationship we need to edit the Cellular entity (created in the previous sections). Check the

code below:

import javax.persistence.*;

39 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

@Entity
public class Cellular {

 @Id
 @GeneratedValue
 private int id;

 @OneToOne(mappedBy = "cellular")
 private Person person;

 @OneToMany(mappedBy = "cellular")
 private List<Call> calls;

 private int number;

 // get and set
}

About the code above:

•The @OneToMany annotation is used. This annotation must be placed in a collection.

•The mappedBy directtive is used to define the Call entity as the relationship owner.

Every relationship needs one of the entities to be the “relationship owner”. Being the relationship owner is nothing

more than to have the foreign key in the database table. In the code above you can see that the annotation

@JoinColumn has been used. This annotation indicates that the foreign key will be located in the call database

table, making the Call entity owner of the relationship.

There is no such “auto relationship”
For a Bidirectional relationship to work correctly it is necessary to do like below:

call.setCellular(cellular);
cellular.setCalls(calls);

JPA uses the Java concept of class reference, a class must maintain a reference to another one if there will be a

join between them. JPA will not create a relationship automatically; to have the relationship in both sides it is

needed to do like above.

ManyToMany unidirectional and bidirectional
In a ManyToMany example a person may have several dogs and a dog may have several persons (imagine a dog

that lives in a house with 15 persons).

In a ManyToMany approach it is necessary to use an extra database table to store the ids that relate the database

40 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

tables of every entity of the relationship. Thus for the specific example we will have a person table, a dog table and

a relationship table named person_dog. The person_dog table would only maintain the person_id and dog_id

values that represent which dog belongs to which person.

See the database table images below:

Person table

Dog table

person_dog table

Notice that the person_dog has only ids.

Check the Person entity below:

import java.util.List;

import javax.persistence.*;

@Entity
public class Person {

 @Id
 @GeneratedValue
 private int id;

41 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

 private String name;

 @ManyToMany
 @JoinTable(name = "person_dog", joinColumns = @JoinColumn(name = "person_id"), inverseJoinColumns =
@JoinColumn(name = "dog_id"))
 private List<Dog> dogs;

 @OneToOne
 @JoinColumn(name = "cellular_id")
 private Cellular cellular;

 // get and set
}

About the code above:

•The @ManyToMany annotation is used.

•The @JoinTable annotation is used to set the relationship table between the entities; “name”

sets the table name; “joinColumn” defines the column name in the table of the relationship

owner; “inverseJoinColumns” defines the column name in the table of the non-relationship

owner.

The Person entity has unidirectional relationship with the Dog entity. Check how the Dog entity would look like in a

bidirectional relationship:

import java.util.List;

import javax.persistence.*;

@Entity
public class Dog {

 @Id
 @GeneratedValue
 private int id;

 private String name;

 @ManyToMany(mappedBy="dogs")
 private List<Person> persons;

 // get and set
}

As you can see the @ManyToMany annotation is configured with the "mappedBy" option, which establishes the

Person entity as the relationship owner.

Every relationship needs that one of the entities be the “relationship owner”. For the ManyToMany association the

relationship owner entity is the one that is dictated by the "mappedBy" option usually copnfigured with the

42 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

@ManyToMany annotation at the non-owner entity of the relation. If the "mappedBy" option is not found in any of

the related entities JPA will define both entities as the relationship owners. The "mappedBy" option must point to the

associated entity's attribute name and not the associated entity's name.

There is no such “auto relationship”
For a Bidirectional relationship to work correctly it is necessary to do like below:

person.setDog(dogs);
dog.setPersons(persons);

JPA uses the Java concept of class reference, a class must maintain a reference to another one if there will be a

join between them. JPA will not create a relationship automatically; to have the relationship in both sides it is

needed to do like above.

ManyToMany with extra fields
Imagine a Person entity that has a ManyToMany relationship with the Dog entity; every time that a dog is adopted

by a person the application should register the adoption date. This value must be stored in the relationship and not

an an attribute on person nor dog.

To handle this kind of situationwe use the "Associative Class" alias "Associative Entity" approach. With this

approach it is possible to store extra data when the ManyToMany relationship is created.

The image below shows how this entity can be mapped:

43 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

To map this extra field, implement like the following code:

import java.util.List;

import javax.persistence.*;

@Entity
public class Person {

 @Id
 @GeneratedValue
 private int id;

 private String name;

 @OneToMany(mappedBy = "person")
 private List<PersonDog> dogs;

 // get and set
}

import java.util.List;

import javax.persistence.*;

@Entity
public class Dog {

 @Id
 @GeneratedValue
 private int id;

44 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

 private String name;

 @OneToMany(mappedBy = "dog")
 private List<PersonDog> persons;

 // get and set
}

The code above is using the @OneToMany relationship with the mappedBy option. Notice that there is no

@ManyToMany relationship between the entities, but there is an entity PersonDog that unite both entities.

Below is the PersonDog code:

import java.util.Date;

import javax.persistence.*;

@Entity
@IdClass(PersonDogId.class)
public class PersonDog {

 @Id
 @ManyToOne
 @JoinColumn(name="person_id")
 private Person person;

 @Id
 @ManyToOne
 @JoinColumn(name="dog_id")
 private Dog dog;

 @Temporal(TemporalType.DATE)
 private Date adoptionDate;

 // get and set
}

In the code above you can see the relationships between PersonDog, Dog and Person, and an extra attribute to

store the adoption date. There is an id class to store the relationship ids named "PersonDogId":

import java.io.Serializable;

public class PersonDogId implements Serializable {

 private static final long serialVersionUID = 1L;

 private int person;
 private int dog;

 public int getPerson() {
 return person;
 }

45 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

 public void setPerson(int person) {
 this.person = person;
 }

 public int getDog() {
 return dog;
 }

 public void setDog(int dog) {
 this.dog = dog;
 }

 @Override
 public int hashCode() {
 return person + dog;
 }

 @Override
 public boolean equals(Object obj) {
 if(obj instanceof PersonDogId){
 PersonDogId personDogId = (PersonDogId) obj;
 return personDogId.dog == dog && personDogId.person == person;
 }

 return false;
 }
}

One thing to notice here is that person and dog attributes must have the same name - "person" and "dog" here -

between the PersonDogId and PersonDog entities. It is how JPA works. More information about complex keys can

be found at earlier sections of this document.

How the Cascade functionality works? How should a
developer use the OrphanRemoval? Handling the
org.hibernate.TransientObjectException
It is very common two or more entities to receive updates in the same transaction. When editing a person's data for

example, we could change their name, address, age, car color etc. These changes should trigger updates to three

different entities: Person, Car and Address.

The updates above could be done as shown in the code snippet below:

car.setColor(Color.RED);
car.setOwner(newPerson);
car.setSoundSystem(newSound);

46 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

If the code below were to be executed the exception org.hibernate.TransientObjectException would be thrown:

EntityManager entityManager = // get a valid entity manager

Car car = new Car();
car.setName("Black Thunder");

Address address = new Address();
address.setName("Street A");

entityManager.getTransaction().begin();

Person person = entityManager.find(Person.class, 33);
person.setCar(car);
person.setAddress(address);

entityManager.getTransaction().commit();
entityManager.close();

With the EclipseLink JPA implementation the following message would be fired: “Caused by:

java.lang.IllegalStateException: During synchronization a new object was found through a relationship that was not marked

cascade PERSIST”.

What means that an entity is transient? Or what a relationship not marked with cascade persist is all about?

JPA works as a tracker for every entity that participates in a transaction. An entity that participates in a transaction is

an entity that will be created, updated, deleted. JPA needs to know where that entity came from and where it is

going to. When a transaction is opened every entity brought from the database is “attached”. With “attached” we

mean that the entity is inside a transaction, being monitored by JPA. An entity remains attached until the transaction

is closed (rules for JSE applications or transactions without EJB Stateful Session Beans with Persistence Scope

Extended are different); to be attached an entity needs to come from a database (by query, entity manager find

method…), or receive some contact inside the transaction (merge, refresh).

Notice the code below:

entityManager.getTransaction().begin();
Car myCar = entityManager.find(Car.class, 33);
myCar.setColor(Color.RED);
entityManager. getTransaction().commit();

The transaction is opened, an update is made in the entity and the transaction is committed. It was not required to

do an explicit update to the entity, with the transaction committing all updates made to the entity will be persisted to

the database. The updates made to the Car entity were persisted to the database because the entity is attached,

any update to an attached entity will be persisted in the database after the transaction commits() or a flush call is

made.

47 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

As shown In the code snippet above "myCar" entity was brought from the database inside a transaction, thus JPA

will have the "myCar" entity attached into that Persistence Context. It is possible to define a Persistence Context as

a place where JPA will put all attached entities to that transaction, or as a big bag. The images below show this

concept:

48 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

Notice in the image above that the Car entity is added to the Persistence Context only after a database query is

performed to retrieve it from the database. Every update in the Car entity will be monitored by JPA. Once the

transaction is finished (or the flush command invoked), JPA will persist this changes to the database.

The aforementioned problem occures when we update a relationship between two entities. Check the code and the

image below:

entityManager.getTransaction().begin();
Person newPerson = new Person();
newPerson.setName("Mary");
Car myCar = entityManager.find(Car.class, 33);
myCar.setOwner(newPerson);
entityManager. getTransaction().commit();

The Car entity establishes a relationship with the Person entity. The problem is that the Person entity is outside of

the Persistence Context, notice that the person entity was not brought from the database nor was attached to the

transaction. Upon commit JPA cannot recognize that Person is a new entity, which does not exist in the database.

Even if the Person entity existed in the database, since it came from outside a transaction (e.g. a JSF

ManagedBean, Struts Action) it will be considerate unmanagable in this Persistence Context. An object outside the

Persistence Context is known as “detached”.

This detached entity situation may happen in any JPA operations: INSERT, UPDATE, DELETE…

To help in these situations JPA created the option Cascade. This option can be defined in the annotations:

@OneToOne, @OneToMany and @ManyToMany. The enum javax.persistence.CascadeType has all Cascade

options available.

49 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

Check the cascade options below:

•CascadeType.DETACH

•CascadeType.MERGE

•CascadeType.PERSIST

•CascadeType.REFRESH

•CascadeType.REMOVE

•CascadeType.ALL

The Cascade applies the behavior to repeat the action defined in the relationship. See the code below:

import javax.persistence.*;

@Entity
public class Car {

 @Id
 @GeneratedValue
 private int id;

 private String name;

 @OneToOne(cascade = CascadeType.PERSIST)
 private Person person;

 // get and set
}

In the persistence code above it is defined that the @OneToOne Person relationship will have the

Cascade.PERSIST action executed every time the command entityManager.persist(car) is executed; thus for every

persist action invoked in a Car entity JPA will invoke persist in the Person relationship also.

The Cascade advantage is that the propagation of an action is automatic, just need to configure it in a relationship.

Check below the Cascade options:

Type Action Triggered by

CascadeType.DETACH When the entity is
removed from the
Persistence Context (it will
cause the entity to be
detached) this action will
be reflected in the
relationship.

Finished Persistence Context or
by command:
entityManager.detach(),
entityManager.clear().

CascadeType.MERGE When an entity has any When the entity is updated and

50 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

data updated this action
will be reflected in the
relationship.

the transaction finishes or by
command:
entityManager.merge().

CascadeType.PERSIST When a new entity is
persisted in the database
this action will be
reflected in the
relationship.

When a transaction finishes or
by
command:entityManager.persis
t().

CascadeType.REFRESH When an entity has its
data synchronized with
the database this action
will be reflected in the
relationship.

By command:
entityManager.refresh().

CascadeType.REMOVE When an entity is deleted
from the database this
action will be reflected in
the relationship.

By command:
entityManager.remove().

CascadeType.ALL When any of the actions
above is invoked by the
JPA or by command, this
action will be reflected in
the relationship.

By any command or action
described above.

Once the cascade is defined, the code below should run without error:

entityManager.getTransaction().begin();
Person newPerson = new Person();
newPerson.setName("Mary");
Car myCar = entityManager.find(Car.class, 33);
myCar.setOwner(newPerson);
entityManager. getTransaction().commit();

Observations about Cascade:

•A developer must be cautious when using CascadeType.ALL in a relationship. When the entity is

deleted its relationship would be deleted as well. In the sample code above, if the cascade type

in the Car entity was set to the ALL option, when a Car entity was deleted from the database the

Person entity would be deleted also.

•CascadeType.ALL (or individual cascades) can cause low performance in every action triggered

in the entity. If for example an entity has a lot of lists of referenced entities a merge() action

invoked on the specific entity could cause all lists to be merged too.

•car.setOwner(personFromDB) => if the "personFromDB" entity exists in the DB but is detached

51 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

for the persistence context, Cascade will not help. When the command

entityManager.persist(car) is executed JPA will run the persist command for every relationship

defined with CascadeType.PERSIST (e.g. entityManager.persist(person)). If the Person entity

already exists in the database JPA will try to insert the same record again and an error message

will be thrown. In this case only “attached” entities can be used, the best way to do it is by using

the getReference() method that we present here in more detail.

In order for JPA to trigger the cascade it is necessary always to execute the action in the entity that has the cascade

option defined. Check the code below:

import javax.persistence.*;

@Entity
public class Car {

 @Id
 @GeneratedValue
 private int id;

 private String name;

 @OneToOne(cascade = CascadeType.PERSIST)
 private Person person;

 // get and set
}

import javax.persistence.*;

@Entity
public class Person {

 @Id
 private int id;

 private String name;

 @OneToOne(mappedBy="person")
 private Car car;

 // get and set
}

The correct way to trigger the cascade in the entities above is:

entityManager.persist(car);

52 of 60

http://www.javacodegeeks.com/
http://uaihebert.com/?p=1274

JPA Mini Book www.javacodegeeks.com

JPA will search inside the Car entity if there is a Cascade option that should be triggered. If the persist was

executed like below the transient error message would be thrown:

entityManager.persist(person);

Remember: the cascade will only be triggered by JPA when the action is executed in the entity that has the Cascade configured,

in the sample above the Car class defined the Cascade to Person; only the Car class will trigger the Cascade.

OrphanRemoval

The OrphanRemoval option works almost like the CascadeType.REMOVE. The OrphanRemoval is usually applied

in cases where an entity just exists inside another entity.

Imagine a situation where an Address entity will only exist inside a Person entity:

If a new Person entity is persisted to the database an Address entity will be created too. Conceptually the Address

entity is created only when a new Person entity is created and when the Person entity is deleted the Address entity

is deleted also, just like by using the CascadeType.REMOVE option.

The OrphanRemoval has almost the same functionality as the CascadeType.REMOVE, but conceptually it must be

applied at class composition level.

Look at the code below:

import javax.persistence.*;

@Entity
public class Address {

53 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

 @Id
 @GeneratedValue
 private int id;

 private String name;

 // get and set
}

import javax.persistence.*;

@Entity
public class Person {

 @Id
 private int id;

 private String name;

 @OneToMany(orphanRemoval=true)
 private List<Address> address;

 // get and set
}

Imagine that a specific Address entity is assigned to a specific Person entity and only that Person entity has access

to it.

As stated above OrphanRemoval is almost like CascadeType.REMOVE. The difference is that the dependent

entity will be deleted from the database if the attribute is set to null as showin at the code snippet below:

person.setAddress(null);

When the Person entity gets updated in the database, the Address entity will be deleted from the database. The

person.setAddress(null) would cause the Address entity to be orphan.

The OrphanRemoval option is only available in the annotations: @OneToOne and @OneToMany.

How to delete an entity with relationships. Clarify
which relationships are raising the exception
When an entity is deleted from the database a constraint error may appear, something

like:“java.sql.SQLIntegrityConstraintViolationException”. This error might happen if we try to delete a Person entity that

is related to a Car entity and the CascadeType.REMOVE is not defined for the specific association (see the last

chapter about Cascade definition).

54 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

In order to perform the removal of the Person entity we could do:

•CascadeType.REMOVE => Once the entity is deleted its child entity (Car) will be deleted too.

Check the previous section to see how to do it.

•OrphanRemoval => Can be applied but have a different behavior than CascadeType.REMOVE.

Check the last chapter to see how to do it.

•Set the relationship to null before excluding it:

person.setCar(null);
entityManager.remove(person);

Unfortunately locating the actual entity that is the cause of the specific exception is not straightforward at all. What

can be done is catch the class name displayed in the error message of the exception and go on from there. This

solution is not accurate because the error message is a String with a long text containing the database table name.

Nevertheless this message may change by each distinct JPA implementation, JDBC driver, local database

language etc.

Creating one EntityManagerFactory by application
When controlling database transactions programmatically one EntityManagerFactory per application is usually

used. This is the optimal approach since loading an EntityManagerFactory has a high performance cost; JPA will

analyze the database, validate entities and perform several other tasks when creating a new EntityManagerFactory.

Thus it is unviable to create a new EntityManagerFactory per transaction.

Below is a code that can be used:

import javax.persistence.*;

public abstract class ConnectionFactory {
 private ConnectionFactory() {
 }

 private static EntityManagerFactory entityManagerFactory;

 public static EntityManager getEntityManager(){
 if (entityManagerFactory == null){
 entityManagerFactory = Persistence.createEntityManagerFactory("MyPersistenceUnit");
 }

 return entityManagerFactory.createEntityManager();
 }
}

55 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

Understanding how the Lazy/Eager option works
An entity may have an attribute with a huge size (e.g. a large file) or a big list of entities e.g a person may have

several cars or a picture with 150 MB of size.

Check the code below:

import javax.persistence.*;

@Entity
public class Car {

 @Id
 @GeneratedValue
 private int id;

 private String name;

 @ManyToOne
 private Person person;

 // get and set
}

import java.util.List;

import javax.persistence.*;

@Entity
public class Person {

 @Id
 private int id;

 private String name;

 @OneToMany(mappedBy = "person", fetch = FetchType.LAZY)
 private List<Car> cars;

 @Lob
 @Basic(fetch = FetchType.LAZY)
 private Byte[] hugePicture;

 // get and set
}

About the code above:

•Notice that the collection is assigned a FetchType.LAZY option.

•Notice that the image Byte[] hugePicture is assigned a FetchType.LAZY option also.

56 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

When a field is marked with a lazy fetch type option it is implied that JPA should not load the specific attribute

“naturally”. When the command entityManager.find(Person.class, person_id) is used to retrieve the specific person

from the database the "cars" list and the "hugePicture" field will not be loaded. The amount of data returned from

the database will be smaller. The advantage of this approach is that the query has less performance impact and the

data traffic over the network is smaller.

This data can be accessed when the relevant get methods of the Person entity are invoked. When the command

person.getHugePicture() is executed a new query will be fired against the database searching this information.

Every simple attribute will have the FetchType.EAGER option enabled by default. To mark a simple attribute as

LAZY fetched just add the annotation @Basic with the Lazy option selected just like above.

The relationship between entities has a default behavior too:

•Relationships finish with “One” will be EAGERly fetched: @OneToOne and @ManyToOne.

•Relationships finish with “Many” will be LAZYly fetched: @OneToMany and @ManyToMany.

To change the default behavior you should do like demonstrated above.

When we use the LAZY behavior the exception “Lazy Initialization Exception” may happen. This error happens

when the LAZY attribute is accessed without any opened connection. Check this post to see how to solve this

problem: Four solutions to the LazyInitializationException.

The problem with EAGER fetch type in all list/attributes is that the database query may increase a lot. For example

if every Person entity has a list of thousant of actions logs, imagine the cost to bring hundred or even thousants of

Person entities from the database! A developer must be very cautious when choosing which kind of fetch strategy

will be used to every attribute/relationship.

Handling the “cannot simultaneously fetch multiple
bags” error
This error happens when JPA retrieves an entity from the database and this entity has more than one list fields

marked for EAGERly fetching.

Check the code below:

import java.util.List;

57 of 60

http://www.javacodegeeks.com/
http://uaihebert.com/?p=1383

JPA Mini Book www.javacodegeeks.com

import javax.persistence.*;

@Entity
public class Person {

 @Id
 private int id;

 private String name;

 @OneToMany(mappedBy = "person", fetch = FetchType.EAGER, cascade = CascadeType.ALL)
 private List<Car> cars;

 @OneToMany(fetch = FetchType.EAGER)
 private List<Dog> dogs;

 // get and set
}

When a query to get the Person entity above is fired the following error message is displayed:

“javax.persistence.PersistenceException: org.hibernate.HibernateException: cannot simultaneously fetch multiple

bags”, a list can be known as bag.

This error happens because Hibernate (the specific JPA implementation farmework used for this example) tries to

bring the same result amount for each list. If the generated SQL returns 2 lines for the "dog" entity list and one for

the "car" entity list, Hibernate will repeat the "car" query to make the result equal. Check the images below to

understand what is happening when the entityManager.find(Person.class, person_id) command is executed:

58 of 60

http://www.javacodegeeks.com/

JPA Mini Book www.javacodegeeks.com

The problem arises when repeated results appear and break the correct query result. The red cells in the image

above are the repeated results.

There are four solutions for this situation:

•To use java.util.Set instead of other collection types => with this easy change the error can be

avoided.

•To use EclipseLink => it is a radical solution, but for JPA only users that use only JPA annotations

this change will have minimal impact.

•To use FetchType.LAZY instead of EAGER => this solution is a temporary solution, because if a

query fetches data from two collections this error may occur again. For example the following

query could trigger the error: “select p from Person p join fetch p.dogs d join fetch p.cars c”.

Additionally when using this approach the LazyInitializationException error may happen.

•To use @LazyCollection or @IndexColumn of the Hibernate implementation in the collection =>

it is a very good idea to understand how the @IndexColumn works and its effects when used, its

behavior will change varying to which side of the relationship it is added (the explanation of this

annotation is outside the scope of this mini book).

59 of 60

http://www.javacodegeeks.com/
http://uaihebert.com/?p=1383

JPA Mini Book www.javacodegeeks.com

ABOUT THE AUTHOR

Hebert Coelho is a senior Java Development, with 4 certifications and a published
book about JSF (portuguese only). Founder of the blog uaiHebert.com visited from
more than 170 different countries.

ABOUT THE EDITOR

Byron Kiourtzoglou is a master software engineer working in the IT and Telecom domains.
He is an applications developer in a wide variety of applications/services. He is currently
acting as the team leader and technical architect for a proprietary service creation and
integration platform for both the IT and Telecom industries in addition to a in-house big data
real-time analytics solution. He is always fascinated by SOA, middleware services and
mobile development. Byron is co-founder and Executive Editor at Java Code Geeks.

60 of 60

http://www.javacodegeeks.com/
http://uaihebert.com/
http://www.linkedin.com/pub/hbert-coelho-de-oliveira/46/ba8/5bb
http://twitter.com/uaiHebert
https://plus.google.com/105364992030294471443?rel=author
http://www.linkedin.com/pub/byron-kiourtzoglou/22/ab2/530
http://www.facebook.com/byron.kiou
http://www.javacodegeeks.com/

	Reasons that led to the creation of JPA
	What is JPA? What is a JPA Implementation?
	What is the persistence.xml file used for? And its configurations?
	Entity definitions. What are the Logic and Physical annotations?
	Id Generation: Definition, using Identity or Sequence
	Identity
	Sequence

	Id Generation: TableGenerator and Auto
	TableGenerator
	Auto

	Simple Composite Key
	@IdClass
	@Embeddable

	Complex Composite Key
	How to get an EntityManager
	Mapping two or more tables in one entity
	Mapping Hierarchy: MappedSuperclass
	Mapping Hierarchy: Single Table
	Mapping Hierarchy: Joined
	Mapping Hierarchy: Table per Concrete Class
	Pros/Cons of each hierarchy mapping approach
	Embedded Objects
	ElementCollection – how to map a list of values into a class
	OneToOne unidirectional and bidirectional
	Unidirectional
	Bidirectional

	There is no such “auto relationship”
	OneToMany/ManyToOne unidirectional and bidirectional
	There is no such “auto relationship”
	ManyToMany unidirectional and bidirectional
	There is no such “auto relationship”
	ManyToMany with extra fields
	How the Cascade functionality works? How should a developer use the OrphanRemoval? Handling the org.hibernate.TransientObjectException
	OrphanRemoval

	How to delete an entity with relationships. Clarify which relationships are raising the exception
	Creating one EntityManagerFactory by application
	Understanding how the Lazy/Eager option works
	Handling the “cannot simultaneously fetch multiple bags” error

