

Abstraction in Java i

Abstraction in Java

Abstraction in Java ii

Contents

1 Introduction 1

2 Interfaces 2

2.1 Defining Interfaces . 2

2.2 Implementing Interfaces . 3

2.3 Using Interfaces . 3

3 Abstract Classes 5

3.1 Defining Abstract Classes . 5

3.2 Extending Abstract Classes . 6

3.3 Using Abstract Classes . 7

4 A Worked Example - Payments System 9

4.1 The Payee Interface . 9

4.2 The Payment System . 9

4.3 The Employee Classes . 10

4.3.1 The SalaryEmployee Class . 10

4.3.1.1 Class Diagram . 11

4.3.1.2 Code . 11

4.3.2 The CommissionEmployee Class . 11

4.3.2.1 Class Diagram . 12

4.3.2.2 Code . 12

4.3.3 The Employee Abstract Class . 13

4.3.3.1 Class Diagram . 13

4.3.3.2 Code . 13

4.4 The Application . 14

4.4.1 The PaymentApplication Class . 15

4.5 Handling Bonuses . 16

4.5.1 The Employee Class for Bonuses . 16

4.6 Contracting Companies . 18

4.6.1 The ContractingCompany Class . 18

Abstraction in Java iii

4.6.1.1 Class Diagram . 19

4.6.1.2 Code . 19

4.7 Advanced Functionality: Taxation . 21

4.7.1 The TaxablePayee Interface . 21

4.7.1.1 Class Diagram . 22

4.7.1.2 Code . 22

4.7.2 Taxation changes in PaymentSystem . 24

5 Conclusion 27

Abstraction in Java iv

Copyright (c) Exelixis Media P.C., 2014

All rights reserved. Without limiting the rights under
copyright reserved above, no part of this publication
may be reproduced, stored or introduced into a retrieval system, or
transmitted, in any form or by any means (electronic, mechanical,
photocopying, recording or otherwise), without the prior written
permission of the copyright owner.

Abstraction in Java v

Preface

In software engineering and programming language theory, the abstraction principle (or the principle of abstraction) is a basic
dictum that aims to reduce duplication of information in a program (usually with emphasis on code duplication) whenever
practical by making use of abstractions provided by the programming language or software libraries. The principle is sometimes
stated as a recommendation to the programmer, but sometimes stated as requirement of the programming language, assuming
it is self-understood why abstractions are desirable to use. The origins of the principle are uncertain; it has been reinvented a
number of times, sometimes under a different name, with slight variations.

When read as recommendation to the programmer, the abstraction principle can be generalized as the "don’t repeat yourself"
principle, which recommends avoiding the duplication of information in general, and also avoiding the duplication of human
effort involved in the software development process.

• Wikipedia

http://en.wikipedia.org/wiki/Abstraction_principle_%28computer_programming%29

http://en.wikipedia.org/wiki/Abstraction_principle_%28computer_programming%29

Abstraction in Java vi

About the Author

Hugh Hamill is a Senior Software Engineer and Certified Scrum Master based in Galway, Ireland. He achieved his B.Sc. in
Applied Computing from Waterford Institute of Technology in 2002 and has been working in industry since then. He has worked
for a several large blue chip software companies listed on both the NASDAQ and NYSE.

Hugh has previously worked with both C++ and VB but currently concentrates on the Java stack. He has experience of building
desktop applications using swing and enterprise back ends using both JEE and Spring. He has been tech lead and architect on
several projects including thick client configuration tools, an event replicating DB access layer, a performance test infrastructure,
a portlet framework, a rules based decision engine for DRM and is currently working on a next gen technology for processing
large amounts of customer data.

His main areas of interest include Core Java, JEE, Spring, Design Patterns, TDD, Maven and Agile Software Development.

Abstraction in Java 1 / 27

Chapter 1

Introduction

In this tutorial we will give an introduction to Abstraction in Java and define a simple Payroll System using Interfaces, Abstract
Classes and Concrete Classes.

There are two levels of abstraction in Java - Interfaces, used to define expected behaviour and Abstract Classes, used to define
incomplete functionality.

We will now look at these two different types of abstraction in detail.

Abstraction in Java 2 / 27

Chapter 2

Interfaces

An interface is like a contract. It is a promise to provide certain behaviours and all classes which implement the interface guar-
antee to also implement those behaviours. To define the expected behaviours the interface lists a number of method signatures.
Any class which uses the interface can rely on those methods being implemented in the runtime class which implements the
interface. This allows anyone using the interface to know what functionality will be provided without having to worry about how
that functionality will actually be achieved. The implementation details are hidden from the client, this is a crucial benefit of
abstraction.

2.1 Defining Interfaces

You can use the keyword interface to define an interface:

public interface MyInterface {

void methodA();

int methodB();

String methodC(double x, double y);

}

Here we see an interface called MyInterface defined, note that you should use the same case conventions for Interfaces that
you do for Classes. MyInterface defines 3 methods, each with different return types and parameters. You can see that none
of these methods have a body; when working with interfaces we are only interested in defining the expected behaviour, not with
it’s implementation.

Note: Java 8 introduced the ability to create a default implementation for interface methods, however we will not cover that
functionality in this tutorial.

Interfaces can also contain state data by the use of member variables:

public interface MyInterfaceWithState {

int someNumber;

void methodA();

}

All the methods in an interface are public by default and in fact you can’t create a method in an interface with an access level
other than public.

Abstraction in Java 3 / 27

2.2 Implementing Interfaces

Now we have defined an interface we want to create a class which will provide the implementation details of the behaviour we
have defined. We do this by writing a new class and using the implements keyword to tell the compiler what interface this
class should implement.

public class MyClass implements MyInterface {

public void methodA() {
System.out.println("Method A called!");

}

public int methodB() {
return 42;

}

public String methodC(double x, double y) {
return "x = " + x + ", y = " y;

}

}

We took the method signatures which we defined in MyInterface and gave them bodies to implement them. We just did
some arbitrary silliness in the implementations but it’s important to note that we could have done anything in those bodies, as
long as they satisfied the method signatures. We could also create as many implementing classes as we want, each with different
implementation bodies of the methods from MyInterface.

We implemented all the methods from MyInterface in MyClass and if we failed to implement any of them the compiler
would have given an error. This is because the fact that MyClass implements MyInterface means that MyClass is guaran-
teeing to provide an implementation for each of the methods from MyInterface. This lets any clients using the interface rely
on the fact that at runtime there will be an implementation in place for the method it wants to call, guaranteed.

2.3 Using Interfaces

To call the methods of the interface from a client we just need to use the dot (.) operator, just like with the methods of classes:

MyInterface object1 = new MyClass();
object1.methodA(); // Guaranteed to work

We see something unusual above, instead of something like MyClass object1 =new MyClass(); (which is perfectly
acceptable) we declare object1 to be of type MyInterface. This works because MyClass is an implementation of MyInter
face, wherever we want to call a method defined in MyInterface we know that MyClass will provide the implementation.
object1 is a reference to any runtime object which implements MyInterface, in this case it’s an instance of MyClass. If
we tried to do MyInterface object1 =new MyInterface() we’d get a compiler error because you can’t instantiate
an interface, which makes sense because there’s no implementation details in the interface - no code to execute.

When we make the call to object1.methodA()we are executing the method body defined in MyClass because the runtime
type of object1 is MyClass, even though the reference is of type MyInterface. We can only call methods on object1
that are defined in MyInterface, for all intents and purposes we can refer to object1 as being of type MyInterface
even though the runtime type is MyClass. In fact if MyClass defined another method called methodD() we couldn’t call it
on object1, because the compiler only knows that object1 is a reference to a MyInterface, not that it is specifically a
MyClass.

This important distinction is what lets us create different implementation classes for our interfaces without worrying which
specific one is being called at runtime.

Take the following interface:

Abstraction in Java 4 / 27

public interface OneMethodInterface {

void oneMethod();

}

It defines one void method which takes no parameters.

Let’s implement it:

public class ClassA implements OneMethodInterface {

public void oneMethod() {
System.out.println("Runtime type is ClassA.");

}
}

We can use this in a client just like before:

OneMethodInterface myObject = new ClassA();
myObject.oneMethod();

Output:

Runtime type is ClassA.

Now let’s make a different implementation for OneMethodInterface:

public class ClassB implements OneMethodInterface {

public void oneMethod() {
System.out.println("The runtime type of this class is ClassB.");

}
}

And modify our code above:

OneMethodInterface myObject = new ClassA();
myObject.oneMethod();
myObject = new ClassB();
myObject.oneMethod();

Output:

Runtime type is ClassA.
The runtime type of this class is ClassB.

We have successfully used the same Reference (myObject) to refer to instances of two different runtime types. The actual
implementation is completely unimportant to the compiler, it just cares that OneMethodInterface is implemented, by
anything, and in any way. As far as the compiler is concerned myObject is a OneMethodInterface, and oneMethod()
is available, even if it’s reassigned to a different instance object of a different class type. This ability to provide more than one
runtime type and have it resolved at run time, rather than compile time, is called polymorphism.

Interfaces define behaviour without any implementation details (ignoring Java 8) and implementing classes define all the imple-
mentation details for the classes they define, but what happens if we want a mix of the two concepts? If we want to mix some
behaviour definition and some implementation together in the same place we can use an abstract class.

Abstraction in Java 5 / 27

Chapter 3

Abstract Classes

An abstract class is like an incomplete blueprint, it defines some of the implementation details of the class while leaving others
as simple behaviour definitions to be implemented later.

Imagine a blueprint of a house where the house is drawn in completely but there is a big empty square where the garage will
go. We know there will be a garage but we don’t know what it will look like. Somebody else will have to take a copy of our
blueprint and draw in the garage. In fact several different people may take copies of our blueprint and draw in different types of
garage. Houses built using these blueprints will all be recognizable variants of our house; the front door, the room layouts and
the windows will all be identical, however the garages will all be different.

Much like the blueprints above our abstract classes will define some methods completely, and these method implementations will
be the same in all implementations of the abstract class. The abstract class will define only the signature for other methods, in
much the same way that interfaces do. The method implementations for these methods will vary in the implementing classes. An
implementing class of an abstract class is commonly referred to as a concrete class. Due to the inheritance relationship between
the concrete class and the abstract class we generally say that a concrete class extends an abstract class, rather than implements
it as we say with interfaces.

Just like with interfaces any client code knows that if a concrete class is extending an abstract class the concrete class guarantees
to provide method bodies for the abstract methods of the abstract class (the abstract class provides it’s own method bodies for
non-abstract methods, of course).

Again, just like interfaces, there can be several different concrete classes of a given abstract class, each may define very different
behaviours for the abstract methods of the abstract class while satisfying the contract of the abstract class. The implementation
details are hidden from the client.

3.1 Defining Abstract Classes

The keyword abstract is used to define both a class and its methods as abstract.

public abstract class MyAbstractClass {

protected int someNumber = 0;

public void increment() {
someNumber++;

}

public abstract void doSomethingWithNumber();

}

Here we have defined an abstract class called MyAbstractClass which contains an integer and provides a method for incre-
menting that integer. We also define an abstract method called doSomethingWithNumber(). We don’t yet know what this

Abstraction in Java 6 / 27

method will do, it will be defined in any concrete classes which extend MyAbstractClass. doSomethingWithNumber()
doesn’t have a method body because it is abstract.

In interfaces all the methods are public by default, however the scope of an abstract method may be public, package or protected.

You can see that some behavioural implementation in increment() is mixed with some behavioural definition in doSomething
WithNumber() in this abstract class. Abstract classes mix some implementation with some definition. Concrete classes which
extend Abstract class will reuse the implementation of increment() while guaranteeing to provide their own implementations
of doSomethingWithNumber().

3.2 Extending Abstract Classes

Now that we have created an abstract class let’s make a concrete implementation for it. We make concrete implementations from
abstract classes by using the extends keyword in a class which itself is not abstract.

public class MyConcreteClass extends MyAbstractClass {

public void sayHello() {
System.out.println("Hello there!");

}

public void doSomethingWithNumber() {
System.out.println("The number is " + someNumber);

}

}

We have created a concrete class called MyConcreteClass and extended MyAbstractClass. We only needed to pro-
vide an implementation for the abstract method doSomethingWithNumber() because we inherit the non private member
variables and methods from MyAbstractClass. If any client calls increment() on MyConcreteClass the implemen-
tation defined in MyAbstractClass will be executed. We also created a new method called sayHello() which is unique
to MyConcreteClass and wouldn’t be available from any other concrete class which implements MyAbstractClass.

We can also extend MyAbstractClass with another abstract class where we don’t implement doSomethingWithNumber
- this means that another concrete class will have to be defined, which extends this new class in order to implement doSometh
ingWithNumber().

public abstract class MyOtherAbstractClass extends MyAbstractClass {

public void sayHello() {
System.out.println("Hello there!");

}
}

We didn’t have to make any reference to doSomethingWithNumber() here, whenever we create a concrete class for MyOt
herAbstractClass we will provide the implementation for doSomethingWithNumber().

Lastly, abstract classes can themselves implement interfaces. Because the abstract class can’t be instantiated itself it does not have
to provide an implementation for all (or any) of the interface methods. If the abstract class does not provide an implementation
for an interface method, the concrete class which extends the abstract class will have to provide the implementation.

public abstract MyImplementingAbstractClass implements MyInterface {

public void methodA() {
System.out.println("Method A has been implemented in this abstract class");

}
}

Here we see that MyImplementingAbstractClass implements MyInterface but only provides an implementation for
methodA(). If any concrete class extends MyImplementingAbstractClass it will have to provide an implementation
for methodB() and methodC() as defined in MyInterface.

Abstraction in Java 7 / 27

3.3 Using Abstract Classes

Just like with Interfaces and regular classes, to call the methods of an abstract class you use the dot (.) operator.

MyAbstractClass object1 = new MyConcreteClass();
object1.increment();
object1.doSomethingWithNumber();

Again we see that object1 is a reference to an instance that provides a concrete implementation for MyAbstractClass
and the runtime type of that instance is MyConcreteClass. For all intents and purposes object1 is treated by the compiler as
if it is a MyAbstractClass instance. If you were to try to call the sayHello() method defined in MyConcreteClass
you would get a compiler error. This method is not visible to the compiler through object1 because object1 is a MyAbstr
actClass reference. The only guarantee object1 provides is that it will have implementations for the methods defined in
MyAbstractClass, any other methods provided by the runtime type are not visible.

object1.sayHello(); // compiler error

As with interfaces we can provide different runtime types and use them through the same reference.

Lets define a new abstract class

public abstract class TwoMethodAbstractClass {

public void oneMethod() {
System.out.prinln("oneMethod is implemented in TwoMethodAbstractClass.");

}

public abstract void twoMethod();
}

It defines one implemented method an another abstract method.

Let’s extend it with a concrete class

public class ConcreteClassA extends TwoMethodAbstractClass {

public void twoMethod() {
System.out.println("twoMethod is implemented in ConcreteClassA.");

}
}

We can use it in a client just like before:

TwoMethodAbstractClass myObject = new ConcreteClassA();
myObject.oneMethod();
myObject.twoMethod();

Output:

oneMethod is implemented in TwoMethodAbstractClass.
twoMethod is implemented in ConcreteClassA.

Now let’s make a different concrete class which extends TwoMethodClass:

public class ConcreteClassB extends TwoMethodAbstractClass {

public void twoMethod() {
System.out.println("ConcreteClassB implements its own twoMethod.");

}
}

And modify our code above:

Abstraction in Java 8 / 27

TwoMethodAbstractClass myObject = new ConcreteClassA();
myObject.oneMethod();
myObject.twoMethod();
myObject = new ConcreteClassB();
myObject.oneMethod();
myObject.twoMethod();

Output:

oneMethod is implemented in TwoMethodAbstractClass.
twoMethod is implemented in ConcreteClassA.
oneMethod is implemented in TwoMethodAbstractClass.
ConcreteClassB implements its own twoMethod.

We have used the same reference (myObject) to refer to instances of two different runtime types. When the runtime type of
myObject is ConcreteClassA it uses the implementation of twoMethod from ConcreteClassA. When the runtime type
of myObject is ConcreteClassB it uses the implementation of twoMethod from ConcreteClassB. In both cases the
common implementation of oneMethod from TwoMethodAbstractClass is used.

Abstract classes are used to define common behaviours while providing contracts or promises that other behaviours will be
available from a concrete class later. This allows us to build object models where we can reuse common functionality and
capture differing requirements in different concrete classes.

Abstraction in Java 9 / 27

Chapter 4

A Worked Example - Payments System

We have been asked to build a payments system for a company. We know that the company has different types of employees that
can be paid in different ways; salaried and with commission. The boss of the company understands that his needs will change
and the system may be changed later to accommodate different types of entities which will receive payments.

4.1 The Payee Interface

Let’s start by considering the employees. They must receive payments, but we also know that later on we may need to have
different entities also receive payments. Let’s create an interface, Payee, which will define the sort of behaviour we’d expect
from entities which can receive payments.

public interface Payee {

String name();

Double grossPayment();

Integer bankAccount();
}

Here we have a Payee interface which guarantees three behaviours; the ability to provide a name for the Payee, the ability to
provide a gross payment amount which should be paid and the ability to provide a bank account number where the funds should
be deposited.

4.2 The Payment System

Now that we have a Payee defined let’s write some code that uses it. We’ll create a PaymentSystem class which maintains a
list of Payees and on demand will cycle through them and transfer the requested amount into the appropriate bank account.

public class PaymentSystem {

private List<Payee> payees;

public PaymentSystem() {
payees = new ArrayList<>();

}

public void addPayee(Payee payee) {
if (!payees.contains(payee)) {

payees.add(payee);

Abstraction in Java 10 / 27

}
}

public void processPayments() {
for (Payee payee : payees) {

Double grossPayment = payee.grossPayment();

System.out.println("Paying to " + payee.name());
System.out.println("tGrosst" + grossPayment);
System.out.println("tTransferred to Account: " + payee. ←↩

bankAccount());
}

}
}

You can see that the PaymentSystem is totally agnostic as to the runtime types of the Payees, it doesn’t care and doesn’t
have to care. It knows that no matter what the runtime type the Payee being process is guaranteed to implement name(),
grossPayment() and bankAccount(). Given that knowledge it’s simply a matter of executing a for loop across all the
Payees and processing their payments using these methods.

4.3 The Employee Classes

We have been told by the boss that he has two different types of Employee - Salaried Employees and Commissioned Employees.
Salaried Employees have a base salary which doesn’t change while Commissioned Employees have a base salary and also can
be given sales commissions for successful sales.

4.3.1 The SalaryEmployee Class

Let’s start with a class for Salaried Employees. It should implement the Payee interface so it can be used by the Payment System.

Let’s represent our changes using class diagrams in addition to code. In class diagrams a dotted arrow means an implements
relationship and a solid arrow means an extends relationship.

Abstraction in Java 11 / 27

4.3.1.1 Class Diagram

Figure 4.1: screenshot

4.3.1.2 Code

public class SalaryEmployee implements Payee {

private String name;
private Integer bankAccount;
protected Double grossWage;

public SalaryEmployee(String name, Integer bankAccount, Double grossWage) {
this.name = name;
this.bankAccount = bankAccount;
this.grossWage = grossWage;

}

public Integer bankAccount() {
return bankAccount;

}

public String name() {
return name;

}

public Double grossPayment() {
return grossWage;

}
}

4.3.2 The CommissionEmployee Class

Now let’s make a CommissionEmployee class. This class will be quite similar to the SalaryEmployee with the ability to
pay commissions.

Abstraction in Java 12 / 27

4.3.2.1 Class Diagram

Figure 4.2: screenshot

4.3.2.2 Code

public class CommissionEmployee implements Payee {

private String name;
private Integer bankAccount;
protected Double grossWage;
private Double grossCommission = 0.0;

public CommissionEmployee(String name, Integer bankAccount, Double grossWage) {
this.name = name;
this.bankAccount = bankAccount;
this.grossWage = grossWage;

}

public Integer bankAccount() {
return bankAccount;

}

public String name() {
return name;

}

public Double grossPayment() {
return grossWage + doCurrentCommission();

}

private Double doCurrentCommission() {
Double commission = grossCommission;
grossCommission = 0.0;
return commission;

}

Abstraction in Java 13 / 27

public void giveCommission(Double amount) {
grossCommission += amount;

}
}

As you can see a lot of the code is duplicated between SalaryEmployee and CommissionEmployee. In fact the only thing
that’s different is the calculation for grossPayment, which uses a commission value in CommissionEmployee. Some of
the functionality is the same, and some is different. This looks a like a good candidate for an Abstract Class.

4.3.3 The Employee Abstract Class

Let’s abstract the name and bank account functionality into an Employee abstract class. SalaryEmployee and Commissi
onEmployee can then extend this abstract class and provide different implementations for grossPayment().

4.3.3.1 Class Diagram

Figure 4.3: screenshot

4.3.3.2 Code

public abstract class Employee implements Payee {

private String name;
private Integer bankAccount;
protected Double grossWage;

Abstraction in Java 14 / 27

public Employee(String name, Integer bankAccount, Double grossWage) {
this.name = name;
this.bankAccount = bankAccount;
this.grossWage = grossWage;

}

public String name() {
return name;

}

public Integer bankAccount() {
return bankAccount;

}
}

Note that Employee doesn’t have to implement the grossPayment() method defined in Payee because Employee is
abstract.

Now let’s rewrite the two Employee classes:

public class SalaryEmployee extends Employee {

public SalaryEmployee(String name, Integer bankAccount, Double grossWage) {
super(name, bankAccount, grossWage);

}

public Double grossPayment() {
return grossWage;

}
}

public class CommissionEmployee extends Employee {

private Double grossCommission = 0.0;

public CommissionEmployee(String name, Integer bankAccount, Double grossWage) {
super(name, bankAccount, grossWage);

}

public Double grossPayment() {
return grossWage + doCurrentCommission();

}

private Double doCurrentCommission() {
Double commission = grossCommission;
grossCommission = 0.0;
return commission;

}

public void giveCommission(Double amount) {
grossCommission += amount;

}
}

Much neater!

4.4 The Application

Let’s try using our new Employee types in an application. We’ll create an application class that initializes the system by
creating a Payment System, some Employees and simulating a week of work.

Abstraction in Java 15 / 27

4.4.1 The PaymentApplication Class

The application class looks like this:

public class PaymentApplication {

public static void main(final String... args) {
// Initialization
PaymentSystem paymentSystem = new PaymentSystem();

CommissionEmployee johnSmith = new CommissionEmployee("John Smith", 1111, ←↩
300.0);

paymentSystem.addPayee(johnSmith);

CommissionEmployee paulJones = new CommissionEmployee("Paul Jones", 2222, ←↩
350.0);

paymentSystem.addPayee(paulJones);

SalaryEmployee maryBrown = new SalaryEmployee("Mary Brown", 3333, 500.0);
paymentSystem.addPayee(maryBrown);

SalaryEmployee susanWhite = new SalaryEmployee("Susan White", 4444, 470.0);
paymentSystem.addPayee(susanWhite);

// Simulate Week
johnSmith.giveCommission(40.0);
johnSmith.giveCommission(35.0);
johnSmith.giveCommission(45.0);

paulJones.giveCommission(45.0);
paulJones.giveCommission(51.0);
paulJones.giveCommission(23.0);
paulJones.giveCommission(14.5);
paulJones.giveCommission(57.3);

// Process Weekly Payment
paymentSystem.processPayments();

}

We create two commissioned employees and two salaried employees, each with their own names, base wages and bank account
numbers. We load each of the employees into the Payment System we created. We then simulate a week by giving commissions
to the two commissioned employees and then ask the Payment System to process all the payments for the week.

Output:

Paying to John Smith
Gross 420.0
Transferred to Account: 1111

Paying to Paul Jones
Gross 540.8
Transferred to Account: 2222

Paying to Mary Brown
Gross 500.0
Transferred to Account: 3333

Paying to Susan White
Gross 470.0
Transferred to Account: 4444

Abstraction in Java 16 / 27

4.5 Handling Bonuses

The boss is very happy with the system so far, but he’s told us that in order to motivate his employees he wants the ability to give
them weekly percentage bonuses. He tells us that because Commissioned Employees are typically on a lower salary we should
give them a bonus multiplier of 1.5x in order that their percentage bonus is bumped up. The bonus should be reflected in the
gross payment of each employee.

4.5.1 The Employee Class for Bonuses

Let’s add a field to employee to capture any bonuses that are given, a protected method to return and reset the bonus and an abstract
method to give the bonus. The doBonus() method is protected so that it can be accessed by the concrete Employee classes.
The giveBonus method is abstract because it will be implemented differently for Salaried and Commissioned Employees.

public abstract class Employee implements Payee {

private String name;
private Integer bankAccount;

protected Double currentBonus;
protected Double grossWage;

public Employee(String name, Integer bankAccount, Double grossWage) {
this.name = name;
this.bankAccount = bankAccount;
this.grossWage = grossWage;
currentBonus = 0.0;

}

public String name() {
return name;

}

public Integer bankAccount() {
return bankAccount;

}

public abstract void giveBonus(Double percentage);

protected Double doCurrentBonus() {
Double bonus = currentBonus;
currentBonus = 0.0;
return bonus;

}
}

Updates to SalaryEmployee:

public class SalaryEmployee extends Employee {

public SalaryEmployee(String name, Integer bankAccount, Double grossWage) {
super(name, bankAccount, grossWage);

}

public void giveBonus(Double percentage) {
currentBonus += grossWage * (percentage/100.0);

}

public Double grossPayment() {
return grossWage + doCurrentBonus();

}

Abstraction in Java 17 / 27

}

Updates to CommissionEmployee:

public class CommissionEmployee extends Employee {

private static final Double bonusMultiplier = 1.5;

private Double grossCommission = 0.0;

public CommissionEmployee(String name, Integer bankAccount, Double grossWage) {
super(name, bankAccount, grossWage);

}

public void giveBonus(Double percentage) {
currentBonus += grossWage * (percentage/100.0) * bonusMultiplier;

}

public Double grossPayment() {
return grossWage + doCurrentBonus() + doCurrentCommission();

}

private Double doCurrentCommission() {
Double commission = grossCommission;
grossCommission = 0.0;
return commission;

}

public void giveCommission(Double amount) {
grossCommission += amount;

}
}

We can see that both classes implement giveBonus() differently - CommissionEmployee uses the bonus multiplier. We
can also see that both classes use the protected doCurrentBonus() method defined in Employee when working out the
gross payment.

Let’s update our application to simulate paying some weekly bonuses to our Employees:

public class PaymentApplication {

public static void main(final String... args) {
// Initialization
PaymentSystem paymentSystem = new PaymentSystemV1();

CommissionEmployee johnSmith = new CommissionEmployee("John Smith", 1111, ←↩
300.0);

paymentSystem.addPayee(johnSmith);

CommissionEmployee paulJones = new CommissionEmployee("Paul Jones", 2222, ←↩
350.0);

paymentSystem.addPayee(paulJones);

SalaryEmployee maryBrown = new SalaryEmployee("Mary Brown", 3333, 500.0);
paymentSystem.addPayee(maryBrown);

SalaryEmployee susanWhite = new SalaryEmployee("Susan White", 4444, 470.0);
paymentSystem.addPayee(susanWhite);

// Simulate Week
johnSmith.giveCommission(40.0);

johnSmith.giveCommission(35.0);

Abstraction in Java 18 / 27

johnSmith.giveCommission(45.0);
johnSmith.giveBonus(5.0);

paulJones.giveCommission(45.0);
paulJones.giveCommission(51.0);
paulJones.giveCommission(23.0);
paulJones.giveCommission(14.5);
paulJones.giveCommission(57.3);
paulJones.giveBonus(6.5);

maryBrown.giveBonus(3.0);

susanWhite.giveBonus(7.5);

// Process Weekly Payment
paymentSystem.processPayments();

}
}

Output:

Paying to John Smith
Gross 442.5
Transferred to Account: 1111

Paying to Paul Jones
Gross 574.925
Transferred to Account: 2222

Paying to Mary Brown
Gross 515.0
Transferred to Account: 3333

Paying to Susan White
Gross 505.25
Transferred to Account: 4444

The Gross amounts now reflect the bonuses paid to the employees.

4.6 Contracting Companies

The boss is delighted with the Payment System, however he’s thought of someone else he needs to pay. From time to time he
will engage the services of a contracting company. Obviously these companies don’t have wages and aren’t paid bonuses. They
can get several one off payments and when processed by the payment system should be paid all cumulative payments and have
their balance cleared.

4.6.1 The ContractingCompany Class

The ContractingCompany class should implement Payee so it can be used by the Payments System. It should have a
method for paying for services which will be tracked by a cumulative total and used for payments.

Abstraction in Java 19 / 27

4.6.1.1 Class Diagram

Figure 4.4: screenshot

4.6.1.2 Code

public class ContractingCompany implements Payee {

private String name;
private Integer bankAccount;
private Double currentBalance;

public ContractingCompany(String name, Integer bankAccount) {
this.name = name;
this.bankAccount = bankAccount;
currentBalance = 0.0;

}

public String name() {
return name;

}

public Double grossPayment() {
return doPayment();

}

private Double doPayment() {
Double balance = currentBalance;
currentBalance = 0.0;
return balance;

}

Abstraction in Java 20 / 27

public Integer bankAccount() {
return bankAccount;

}

public void payForServices(Double amount) {
currentBalance += amount;

}
}

Lets now add a couple of contracting companies to our Payment Application and simulate some payments to them:

public class PaymentApplication {

public static void main(final String... args) {
// Initialization
PaymentSystem paymentSystem = new PaymentSystemV1();

CommissionEmployee johnSmith = new CommissionEmployee("John Smith", 1111, 300.0, ←↩
100.0);

paymentSystem.addPayee(johnSmith);

CommissionEmployee paulJones = new CommissionEmployee("Paul Jones", 2222, 350.0, ←↩
125.0);

paymentSystem.addPayee(paulJones);

SalaryEmployee maryBrown = new SalaryEmployee("Mary Brown", 3333, 500.0, 110.0);
paymentSystem.addPayee(maryBrown);

SalaryEmployee susanWhite = new SalaryEmployee("Susan White", 4444, 470.0, 130.0);
paymentSystem.addPayee(susanWhite);

ContractingCompany acmeInc = new ContractingCompany("Acme Inc", 5555);
paymentSystem.addPayee(acmeInc);

ContractingCompany javaCodeGeeks = new ContractingCompany("javacodegeeks.com", ←↩
6666);

paymentSystem.addPayee(javaCodeGeeks);

// Simulate Week
johnSmith.giveCommission(40.0);
johnSmith.giveCommission(35.0);
johnSmith.giveCommission(45.0);
johnSmith.giveBonus(5.0);

paulJones.giveCommission(45.0);
paulJones.giveCommission(51.0);
paulJones.giveCommission(23.0);
paulJones.giveCommission(14.5);
paulJones.giveCommission(57.3);
paulJones.giveBonus(6.5);

maryBrown.giveBonus(3.0);

susanWhite.giveBonus(7.5);

acmeInc.payForServices(100.0);
acmeInc.payForServices(250.0);
acmeInc.payForServices(300.0);

javaCodeGeeks.payForServices(400.0);
javaCodeGeeks.payForServices(250.0);

Abstraction in Java 21 / 27

// Process Weekly Payment
paymentSystem.processPayments();
}

Output:

Paying to John Smith
Gross 442.5
Transferred to Account: 1111

Paying to Paul Jones
Gross 574.925
Transferred to Account: 2222

Paying to Mary Brown
Gross 515.0
Transferred to Account: 3333

Paying to Susan White
Gross 505.25
Transferred to Account: 4444

Paying to Acme Inc
Gross 650.0
Transferred to Account: 5555

Paying to javacodegeeks.com
Gross 650.0
Transferred to Account: 6666

We have now successfully added a brand new type of Payee to the system without having to change one single line of code in
the PaymentSystem class which handles Payees. This is the power of abstraction.

4.7 Advanced Functionality: Taxation

The boss is over the moon with the Payment System, however the taxman has sent him a letter telling him that he has to
incorporate some sort of tax withholding into the system or he’ll be in big trouble. There should be a global tax rate for the
system and each employee should have a personal tax free allowance. The tax should only be collected on any payments made
to an employee over and above the tax free allowance. The employee should then only be paid the net amount of payment due to
them. Contracting Companies are responsible for paying their own tax so the system should not withhold tax from them.

In order to handle taxation we’ll need to create a new, special, type of Payee which is taxable and can provide a tax free allowance
figure.

In Java we can extend interfaces. This let’s us add behaviour definitions without modifying our original interface. All of the
behaviour defined in the original interface will be automatically carried into the new interface.

4.7.1 The TaxablePayee Interface

We’ll extend Payee to create a new TaxablePayee interface, we’ll then have Employee implement that interface, while
letting ContractingCompany remain as a regular, untaxed, Payee.

Abstraction in Java 22 / 27

4.7.1.1 Class Diagram

Figure 4.5: screenshot

4.7.1.2 Code

public interface TaxablePayee extends Payee {

public Double allowance();

}

Here we see that Payee is extended and an additional method is defined - allowance() which returns the tax free allowance
of the TaxablePayee.

We’ll now need to update Employee to implement TaxablePayee and we will see that this will have a knock on effect on
both concrete Employee classes.

public abstract class Employee implements TaxablePayee {

private String name;
private Integer bankAccount;
private Double allowance;

Abstraction in Java 23 / 27

protected Double currentBonus;
protected Double grossWage;

public Employee(String name, Integer bankAccount, Double grossWage, Double ←↩
allowance) {

this.name = name;
this.bankAccount = bankAccount;
this.grossWage = grossWage;
this.allowance = allowance;
currentBonus = 0.0;
}

public String name() {
return name;
}

public Integer bankAccount() {
return bankAccount;

}

public Double allowance() {
return allowance;

}

public abstract void giveBonus(Double percentage);

protected Double doCurrentBonus() {
Double bonus = currentBonus;
currentBonus = 0.0;
return bonus;

}

}

We have had to change the constructor of Employee which implies that the constructors of our two abstract classes will also need
to change.

public class SalaryEmployee extends Employee {

public SalaryEmployee(String name, Integer bankAccount, Double grossWage, Double ←↩
allowance) {

super(name, bankAccount, grossWage, allowance);
}

@Override
public void giveBonus(Double percentage) {

currentBonus += grossWage * (percentage/100.0);
}

@Override
public Double grossPayment() {

return grossWage + doCurrentBonus();
}

}

CommissionEmployee:

public class CommissionEmployee extends Employee {

private static final Double bonusMultiplier = 1.5;

Abstraction in Java 24 / 27

private Double grossCommission = 0.0;

public CommissionEmployee(String name, Integer bankAccount, Double grossWage, ←↩
Double allowance) {

super(name, bankAccount, grossWage, allowance);
}

@Override
public void giveBonus(Double percentage) {

currentBonus += grossWage * (percentage/100.0) * bonusMultiplier;
}

@Override
public Double grossPayment() {

return grossWage + doCurrentBonus() + doCurrentCommission();
}

private Double doCurrentCommission() {
Double commission = grossCommission;
grossCommission = 0.0;
return commission;

}

public void giveCommission(Double amount) {
grossCommission += amount;

}
}

4.7.2 Taxation changes in PaymentSystem

We now need to update PaymentSystem to withhold tax and to do this we’ll need some way of determining if a given Payee
is a TaxablePayee or a regular Payee. We can take advantage of a Java keyword called instanceof to do this.

Instanceof lets us check to see if a given reference variable’s runtime type matches a test type. It returns a boolean and
can be called like so: if (object1 instanceof MyClass). This will return true if object1’s runtime type is MyClass
or a subclass or implementing class (if MyClass is an interface) of MyClass. This means we can test anywhere along the
inheritance tree making it a very powerful tool. We can use this tool to determine if a given Payee is an instance of a Taxabl
ePayee and take appropriate measures based on that knowledge.

We now update the PaymentSystem as follows:

public class PaymentSystem {

private List<Payee> payees;
private Double taxRate = 0.2;

public PaymentSystem() {
payees = new ArrayList<>();

}

public void addPayee(Payee payee) {
if (!payees.contains(payee)) {

payees.add(payee);
}

}

public void processPayments() {
for (Payee payee : payees) {

Double grossPayment = payee.grossPayment();
Double tax = 0.0;
if (payee instanceof TaxablePayee) {

Abstraction in Java 25 / 27

Double taxableIncome = grossPayment - ((TaxablePayee)payee) ←↩
.allowance();

tax = taxableIncome * taxRate;
}
Double netPayment = grossPayment - tax;

System.out.println("Paying to " + payee.name());
System.out.println("tGrosst" + grossPayment);
System.out.println("tTaxtt-" + tax);
System.out.println("tNettt" + netPayment);
System.out.println("tTransferred to Account: " + payee.bankAccount ←↩

());
}

}
}

The new code first checks if the Payee being processed is an instance of TaxablePayee, if it is it then does a cast on
the Payee to treat it as a reference to a TaxablePayee for the purposes of accessing the allowance() method defined
in TaxablePayee. Remember; if the reference stayed as a Payee the allowance() method would not be visible to
the PaymentSystem because it is defined in TaxablePayee, not Payee. The cast is safe here because we have already
confirmed that the Payee is an instance of TaxablePayee. Now that PaymentSystem has the allowance it can work out
the taxable amount and the tax to be withheld based on the global tax rate of 20%.

If the Payee is not a TaxablePayee the system continues to process them as normal, not doing anything related to tax
processing.

Let’s update our application class to give our employees different tax free allowances and execute the application again:

public class PaymentApplication {

public static void main(final String... args) {
// Initialization
PaymentSystem paymentSystem = new PaymentSystemV1();

CommissionEmployee johnSmith = new CommissionEmployee("John Smith", 1111, 300.0, ←↩
100.0);

paymentSystem.addPayee(johnSmith);

CommissionEmployee paulJones = new CommissionEmployee("Paul Jones", 2222, 350.0, ←↩
125.0);

paymentSystem.addPayee(paulJones);

SalaryEmployee maryBrown = new SalaryEmployee("Mary Brown", 3333, 500.0, 110.0);
paymentSystem.addPayee(maryBrown);

SalaryEmployee susanWhite = new SalaryEmployee("Susan White", 4444, 470.0, 130.0);
paymentSystem.addPayee(susanWhite);

ContractingCompany acmeInc = new ContractingCompany("Acme Inc", 5555);
paymentSystem.addPayee(acmeInc);

ContractingCompany javaCodeGeeks = new ContractingCompany("javacodegeeks.com", ←↩
6666);

paymentSystem.addPayee(javaCodeGeeks);

// Simulate Week
johnSmith.giveCommission(40.0);
johnSmith.giveCommission(35.0);
johnSmith.giveCommission(45.0);
johnSmith.giveBonus(5.0);

paulJones.giveCommission(45.0);

Abstraction in Java 26 / 27

paulJones.giveCommission(51.0);
paulJones.giveCommission(23.0);
paulJones.giveCommission(14.5);
paulJones.giveCommission(57.3);
paulJones.giveBonus(6.5);

maryBrown.giveBonus(3.0);

susanWhite.giveBonus(7.5);

acmeInc.payForServices(100.0);
acmeInc.payForServices(250.0);
acmeInc.payForServices(300.0);

javaCodeGeeks.payForServices(400.0);
javaCodeGeeks.payForServices(250.0);

// Process Weekly Payment
paymentSystem.processPayments();
}

}

Output:

Paying to John Smith
Gross 442.5
Tax -68.5
Net 374.0
Transferred to Account: 1111

Paying to Paul Jones
Gross 574.925
Tax -89.985
Net 484.93999999999994
Transferred to Account: 2222

Paying to Mary Brown
Gross 515.0
Tax -81.0
Net 434.0
Transferred to Account: 3333

Paying to Susan White
Gross 505.25
Tax -75.05
Net 430.2
Transferred to Account: 4444

Paying to Acme Inc
Gross 650.0
Tax -0.0
Net 650.0
Transferred to Account: 5555

Paying to javacodegeeks.com
Gross 650.0
Tax -0.0
Net 650.0
Transferred to Account: 6666

As you can see tax is calculated and withheld for Employees, while Contracting Companies continue to pay no tax. The boss
couldn’t be happier with the system and is going to gift us an all expenses paid vacation for keeping him out of jail!

Abstraction in Java 27 / 27

Chapter 5

Conclusion

Abstraction is a very powerful tool in Java when used in the correct way. It opens up many possibilities for advanced java use
and for building complex, extensible and maintainable software. We have just scratched the surface of what abstraction can do
for us and hopefully built a foundation for learning about the different ways abstraction can be used in more detail.

