
Programming 2

Inheritance & Polymorphism

Motivation – Lame Shape Application

BWI PROG2 SS11 v1.0 TeM

public class LameShapeApplication {

Rectangle[] theRects=new Rectangle[100];

Circle[] theCircles=new Circle[100];

Triangle[] theTriangles=new Triangle[100];

public void addShape(Rectangle r){}

public void addShape(Triangle t){}

public void addShape(Circle c){}

public void draw(){

for (Rectangle r : theRects)

r.draw();

for (Circle c : theCircles)

c.draw();

for (Triangle t : theTriangles)

t.draw();

}

/* lots more, e.g. UI-stuff */

}

this “graphics-suite”
can handle

Rectangles, Circles,
Triangles

Motivation – Lame Shape Application

BWI PROG2 SS11 v1.0 TeM

public class LameShapeApplication {

Rectangle[] theRects=new Rectangle[100];

Circle[] theCircles=new Circle[100];

Triangle[] theTriangles=new Triangle[100];

public void addShape(Rectangle r){}

public void addShape(Triangle t){}

public void addShape(Circle c){}

public void draw(){

for (Rectangle r : theRects)

r.draw();

for (Circle c : theCircles)

c.draw();

for (Triangle t : theTriangles)

t.draw();

}

/* lots more, e.g. UI-stuff */

}

three list
implementations,
very much alike

Motivation – Lame Shape Application

BWI PROG2 SS11 v1.0 TeM

public class LameShapeApplication {

Rectangle[] theRects=new Rectangle[100];

Circle[] theCircles=new Circle[100];

Triangle[] theTriangles=new Triangle[100];

public void addShape(Rectangle r){}

public void addShape(Triangle t){}

public void addShape(Circle c){}

public void draw(){

for (Rectangle r : theRects)

r.draw();

for (Circle c : theCircles)

c.draw();

for (Triangle t : theTriangles)

t.draw();

}

/* lots more, e.g. UI-stuff */

}

first the Rectangles,
then the Circles, then

the Triangles.
we do not support
different layers!

Motivation – Lame Shape Application

BWI PROG2 SS11 v1.0 TeM

public class LameShapeApplication {

Rectangle[] theRects=new Rectangle[100];

Circle[] theCircles=new Circle[100];

Triangle[] theTriangles=new Triangle[100];

public void addShape(Rectangle r){}

public void addShape(Triangle t){}

public void addShape(Circle c){}

public void draw(){

for (Rectangle r : theRects)

r.draw();

for (Circle c : theCircles)

c.draw();

for (Triangle t : theTriangles)

t.draw();

}

/* lots more, e.g. UI-stuff */

}

three times pretty
much the same code:

call draw() on all
instances

Motivation – Lame Shape Application

BWI PROG2 SS11 v1.0 TeM

public class LameShapeApplication {

Rectangle[] theRects=new Rectangle[100];

Circle[] theCircles=new Circle[100];

Triangle[] theTriangles=new Triangle[100];

public void addShape(Rectangle r){}

public void addShape(Triangle t){}

public void addShape(Circle c){}

public void draw(){

for (Rectangle r : theRects)

r.draw();

for (Circle c : theCircles)

c.draw();

for (Triangle t : theTriangles)

t.draw();

}

/* lots more, e.g. UI-stuff */

}

What changes would be
necessary, if we wanted
to include more Shapes,

e.g. Polygons, Lines,
Stars,… ?

Motivation – Lame Shape Application

BWI PROG2 SS11 v1.0 TeM

public class LameShapeApplication {

Rectangle[] theRects=new Rectangle[100];

Circle[] theCircles=new Circle[100];

Triangle[] theTriangles=new Triangle[100];

Polygon[] thePolys=new Polygon[100];

public void addShape(Rectangle r){}

public void addShape(Triangle t){}

public void addShape(Circle c){}

public void addShape(Polygon p){}

public void draw(){

for (Rectangle r : theRects)

r.draw();

for (Circle c : theCircles)

c.draw();

for (Triangle t : theTriangles)

t.draw();

for (Polygon p : thePolys)

p.draw();

}

}

another array

Motivation – Lame Shape Application

BWI PROG2 SS11 v1.0 TeM

public class LameShapeApplication {

Rectangle[] theRects=new Rectangle[100];

Circle[] theCircles=new Circle[100];

Triangle[] theTriangles=new Triangle[100];

Polygon[] thePolys=new Polygon[100];

public void addShape(Rectangle r){}

public void addShape(Triangle t){}

public void addShape(Circle c){}

public void addShape(Polygon p){}

public void draw(){

for (Rectangle r : theRects)

r.draw();

for (Circle c : theCircles)

c.draw();

for (Triangle t : theTriangles)

t.draw();

for (Polygon p : thePolys)

p.draw();

}

}

another addShape-
version

Motivation – Lame Shape Application

BWI PROG2 SS11 v1.0 TeM

public class LameShapeApplication {

Rectangle[] theRects=new Rectangle[100];

Circle[] theCircles=new Circle[100];

Triangle[] theTriangles=new Triangle[100];

Polygon[] thePolys=new Polygon[100];

public void addShape(Rectangle r){}

public void addShape(Triangle t){}

public void addShape(Circle c){}

public void addShape(Polygon p){}

public void draw(){

for (Rectangle r : theRects)

r.draw();

for (Circle c : theCircles)

c.draw();

for (Triangle t : theTriangles)

t.draw();

for (Polygon p : thePolys)

p.draw();

}

}

more of the same :
polygons are drawn on

top of the rest!

Motivation – Lame Shape Application

BWI PROG2 SS11 v1.0 TeM

public class LameShapeApplication {

Rectangle[] theRects=new Rectangle[100];

Circle[] theCircles=new Circle[100];

Triangle[] theTriangles=new Triangle[100];

Polygon[] thePolys=new Polygon[100];

public void addShape(Rectangle r){}

public void addShape(Triangle t){}

public void addShape(Circle c){}

public void addShape(Polygon p){}

public void draw(){

for (Rectangle r : theRects)

r.draw();

for (Circle c : theCircles)

c.draw();

for (Triangle t : theTriangles)

t.draw();

for (Polygon p : thePolys)

p.draw();

}

}

now, we have drawing and
list logic implemented four
times, plus we still do NOT

support layers

Shape Classes

BWI PROG2 SS11 v1.0 TeM

Rectangle

- Position

- rotationAngle

- width

- height

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ setWidth(double):void

+ getWidth(): double

+ setHeight(double):void

+ getHeight(): double

…

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Circle

- Position

- rotationAngle

- center

- radius

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ setCenter(Point) :void

+ setRadius(double): void

…

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Triangle

- Position

- rotationAngle

- a,b,c

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ setA(Point):void

+ getA():Point

+ setB(Point):void

…

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Shape Classes – common members

BWI PROG2 SS11 v1.0 TeM

Rectangle

- Position

- rotationAngle

- width

- height

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ setWidth(double):void

+ getWidth(): double

+ setHeight(double):void

+ getHeight(): double

…

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Circle

- Position

- rotationAngle

- center

- radius

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ setCenter(Point) :void

+ setRadius(double): void

…

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Triangle

- Position

- rotationAngle

- a,b,c

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ setA(Point):void

+ getA():Point

+ setB(Point):void

…

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Encapsulate commons in a class

BWI PROG2 SS11 v1.0 TeM

Rectangle

- width

- height

+ setWidth(double):void

+ getWidth(): double

[…]

Shape

- Position

- rotationAngle

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Triangle

- a,b,c

+ setA(Point):void

+ getA():Point

[…]

Circle

- center

- radius

+ setCenter(Point) :void

+ setRadius(double): void

[…]

Encapsulate commons in a class

BWI PROG2 SS11 v1.0 TeM

Rectangle

- width

- height

+ setWidth(double):void

+ getWidth(): double

[…]

Shape

- Position

- rotationAngle

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Triangle

- a,b,c

+ setA(Point):void

+ getA():Point

[…]

Circle

- center

- radius

+ setCenter(Point) :void

+ setRadius(double): void

[…]

Inheritance

 Inheritance is the mechanism of creating
classes based on existing classes

 Shape encapsulates the common
attributes and behavior of Rectangle,
Triangle, Circle

 Rectangle, Triangle, Circle extend the
attributes and behavior of Shape

 Shape is the base class (superclass)

 Rectangle, Triangle, Circle are
subclasses of Shape

BWI PROG2 SS11 v1.0 TeM

Inheritance Tree

BWI PROG2 SS11 v1.0 TeM

Rectangle

Shape

Triangle

Circle

 Rectangle, Circle, Trianlge IS-A Shape

 Rectangle, Circle, Trianlge extend Shape

 Rectangle, Circle, Trianlge are subclasses of
Shape

 Shape is the superclass of Rectangle, Circle,
Trianlge

specializationgeneralization
<<extends>>

Circle IS-A Shape

 Circle has everything
Shape has, plus some
more

 Circle extends Shape

 at heart, Circle is still
(also) Shape

 Circle can act as Shape

BWI PROG2 SS11 v1.0 TeM

Circle

- center

- radius

+ setCenter(Point) :void

+ setRadius(double): void

[…]

Shape

- Position

- rotationAngle

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Circle redefines Shape behavior

 some methods might
need to be
reimplemented in Circle

 Circle implements
subclass-specific
behavior

 superclass interface-
contract is obeyed

BWI PROG2 SS11 v1.0 TeM

Circle

- center

- radius

+ setCenter(Point) :void

+ setRadius(double): void

+ getArea(): double

+ getPerimeter(): double

Shape

- Position

- rotationAngle

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Polymorphism

 Polymorphism is the mechanism that

 a subclass instance can act as a superclass
instance

 a subclass can re-implement a superclass
interface with subclass specific behavior

 Circle, Rectangle, Triangle cannot
change the getArea-signature (the
interface)

 Circle, Rectangle, Triangle can redefine
the calculation of the area (the
implementation of the interface)

BWI PROG2 SS11 v1.0 TeM

Shape in Java

BWI PROG2 SS11 v1.0 TeM

public class Shape {

private Position position;

private double rotationAngle;

private Style lineStyle;

private Color lineColor;

private int lineWidth;

private Color fillColor;

public Shape() {/**/}

public Position getPosition() {/**/}

public void setPosition(Position position) {/**/}

public void rotate(double angle) {/**/}

public double getArea() {/**/}

public double getPerimeter() {/**/}

public void shrink(double factor) {/**/}

public void move(double x, double y) {/**/}

public void draw() {/**/}

}

Shape in Java

BWI PROG2 SS11 v1.0 TeM

public class Shape {

/**/

public Shape() {

position=new Position();

rotationAngle=0;

lineStyle=new Style();

lineColor=new Color();

lineWidth=1;

fillColor=new Color();

}

/**/

}

default position
no rotation

default style, color,
etc..

Shape in Java

BWI PROG2 SS11 v1.0 TeM

public class Shape {

/**/

public void rotate(double angle) {

rotationAngle+=angle;

rotationAngle%=360;

}

public double getArea() {

return 0;

}

public double getPerimeter() {

return 0;

}

public void move(double x, double y) {

position.move(x,y);

}

/**/

}

keep in [0,360)

position has move()

play it safe, we do
not know how to
calculate area,
perimeter of a
generic shape

Extending Shape in Java

BWI PROG2 SS11 v1.0 TeM

public class Circle extends Shape {

private Point center;

private double radius;

public void setRadius(double radius) {

this.radius= ((radius<0)?-1:1)*radius;

}

public double getArea(){

return radius*radius*Math.PI;

}

public double getPerimeter(){

return 2*radius*Math.PI;

}

public void move(double x, double y){/**/}

public void draw(){/**/}

/**/

}

additional
properties+methods

Circle is a subclass
of Shape

redefine behavior by
overriding inherited

methods

Circle Application

BWI PROG2 SS11 v1.0 TeM

public class CirlceApp {

public static void main(String[] args) {

Circle c=new Circle();

c.setRadius(1);

TextIO.putln("rotation="+c.getRotationAngle());

c.rotate(20);

TextIO.putln("rotation="+c.getRotationAngle());

TextIO.putln("area="+c.getArea());

c.setRadius(2);

TextIO.putln("area="+c.getArea());

}

}

rotation=0.0

rotation=20.0

area=3.141592653589793

area=12.566370614359172

already defined in Shape

Circle-version is called

Circle acts like a special Shape

BWI PROG2 SS11 v1.0 TeM

public class CirlceApp {

public static void main(String[] args) {

Shape c=new Circle(1);

TextIO.putln("rotation="+c.getRotationAngle());

c.rotate(20);

TextIO.putln("rotation="+c.getRotationAngle());

TextIO.putln("area="+c.getArea());

}

}

rotation=0.0

rotation=20.0

area=3.141592653589793

treat the Circle as a
Shape

Circle-version is called

Polymorphism revisited

 subclass instances
can act as superclass
instances

 Circle IS-A Shape

 Circle has everything
that is expected of a
Shape – it can act as
a Shape

BWI PROG2 SS11 v1.0 TeM

Circle

- center

- radius

+ setCenter(Point) :void

+ setRadius(double): void

+ getArea(): double

+ getPerimeter(): double

Shape

- Position

- rotationAngle

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Shape c=new Circle(1);

Polymorphism revisited

 call to a Shape
method

 overidden in Circle

 most specific version
of method is called at
runtime

BWI PROG2 SS11 v1.0 TeM

Circle

- center

- radius

+ setCenter(Point) :void

+ setRadius(double): void

+ getArea(): double

+ getPerimeter(): double

Shape

- Position

- rotationAngle

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Shape c=new Circle(1);

c.getArea();

Polymorphism

 A subclass instance can be stored in a
superclass reference

 It is a reference to the superclass-aspect
of the instance

 calling a polymorphic method using a
superclass reference executes the most
specific implementation of the method

BWI PROG2 SS11 v1.0 TeM

Cool Shape Application

BWI PROG2 SS11 v1.0 TeM

public class CoolShapeApplication {

Shape[] theShapes = new Shape[100];

public void addshape(Shape s){/**/}

public void draw(){

for (Shape s : theShapes)

s.draw();

}

/* lots more, e.g. UI-stuff */

}

one array to hold all
different kinds of

shapes

Cool Shape Application

BWI PROG2 SS11 v1.0 TeM

public class CoolShapeApplication {

Shape[] theShapes = new Shape[100];

public void addshape(Shape s){/**/}

public void draw(){

for (Shape s : theShapes)

s.draw();

}

/* lots more, e.g. UI-stuff */

}

list logic implemented
once – works for all

kinds of shapes

Cool Shape Application

BWI PROG2 SS11 v1.0 TeM

public class CoolShapeApplication {

Shape[] theShapes = new Shape[100];

public void addshape(Shape s){/**/}

public void draw(){

for (Shape s : theShapes)

s.draw();

}

/* lots more, e.g. UI-stuff */

}

drawing logic
implemented once – for

all kinds of shapes.
plus: we finally support

layers

Cool Shape Application

BWI PROG2 SS11 v1.0 TeM

public class CoolShapeApplication {

Shape[] theShapes = new Shape[100];

public void addshape(Shape s){/**/}

public void draw(){

for (Shape s : theShapes)

s.draw();

}

/* lots more, e.g. UI-stuff */

}

What changes would be
necessary, if we wanted
to include more Shapes,

e.g. Polygons, Lines,
Stars,… ?

Cool Shape Application

BWI PROG2 SS11 v1.0 TeM

public class CoolShapeApplication {

Shape[] theShapes = new Shape[100];

public void addshape(Shape s){/**/}

public void draw(){

for (Shape s : theShapes)

s.draw();

}

/* lots more, e.g. UI-stuff */

}

none!
this code works for

ALL FUTURE SHAPES
(that obey the contract)

Cool Shape Application

BWI PROG2 SS11 v1.0 TeM

public class CoolShapeApplication {

Shape[] theShapes = new Shape[100];

public void addshape(Shape s){/**/}

public void draw(){

for (Shape s : theShapes)

s.draw();

}

/* lots more, e.g. UI-stuff */

}

after defining a new
Shape subtype, only the

code that creates its
instances must be aware

of the new type

BWI PROG2 SS11 v1.0 TeM

Super-Constructor

BWI PROG2 SS11 v1.0 TeM

public class Circle extends Shape {

/**/

public Circle(){

super();

center=new Point();

radius=1;

}

public Circle(double radius){

this();

setRadius(radius);

}

/**/

}

call the super
constructor to create a
default shape and add
Circle-specific default

values

Super-Constructor

BWI PROG2 SS11 v1.0 TeM

public class Circle extends Shape {

/**/

public Circle(){

super();

center=new Point();

radius=1;

}

public Circle(double radius){

this();

setRadius(radius);

}

/**/

}

call to super
constructor must be

first statement

Super-Constructor

BWI PROG2 SS11 v1.0 TeM

public class Circle extends Shape {

/**/

public Circle(){

super();

center=new Point();

radius=1;

}

public Circle(double radius){

this();

setRadius(radius);

}

/**/

}

call an overloaded
constructor, then set

values

Polymorphism revisited

 cannot call a Circle
method using a
Shape reference

 setRadius is not part
of Shape

 Circle lost part of its
identity – it is treated
as a Shape instance

BWI PROG2 SS11 v1.0 TeM

Circle

- center

- radius

+ setCenter(Point) :void

+ setRadius(double): void

+ getArea(): double

+ getPerimeter(): double

Shape

- Position

- rotationAngle

- lineStyle

- lineColor

- lineWidth

- fillColor

+ setPosition(Position):void

+ getPosition(): Position

+ rotate(double): void

+ getArea(): double

+ getPerimeter(): double

+ shrink(double): void

+ move(double, double):void

+ draw()

Shape c=new Circle(1);

c.setRadius(2);

Late Binding

 An invoked method must be part of the
reference-class

 This is checked at compile-time

 If it is not part (even though we are pretty sure
that the object has the method) compilation
fails

 compiler cannot know which type is stored in a
reference at runtime – it could be any (future)
subclass

 the check is safe, because any subclass is
guaranteed to have all methods of the
superclass (interface-contract!)

BWI PROG2 SS11 v1.0 TeM

Late Binding

If the method is part of the reference-
definition, compilation proceeds

 WHICH version of a polymorphic method is
executed, is decided at runtime

 this is decided based on the actual type of the
instance

 the most specific implementation is then
executed

 this process is called Late Binding

BWI PROG2 SS11 v1.0 TeM

Type casting

 With the cast operator, a reference can
be converted

 a reference can be converted to a
subtype-reference : this is called “down-
casting”

 do NOT cast unless you are at least a
100% positive it works

BWI PROG2 SS11 v1.0 TeM

Shape c=new Circle(1);

((Shape) c).setRadius(2);

Shape reference is
converted to a Circle

reference

Type casting

 This is why you should NOT cast

 compiler cannot know what c is at runtime

 cast COULD be possible, since we COULD
HAVE stored a Rectangle in the Shape
reference

BWI PROG2 SS11 v1.0 TeM

Shape c=new Circle(1);

((Rectangle) c).setRadius(2);

Shape reference is
converted to a Rectangle
reference – although it is

actually a Circle
instance!!

BWI PROG2 SS11 v1.0 TeM

Access levels revisited

 any member (attributes, methods,
constructors,…) can be assigned one of
the following access levels
 public:

any code can access

 default (no access modifier):
any code in the same package can access

 protected:

any subclass can access, even in different
packages

 private:

only the class itself can access

BWI PROG2 SS11 v1.0 TeM

Packages

BWI PROG2 SS11 v1.0 TeM

 private members in the baseclass

are not inherited within a package

 members without access modifier
are inherited

SuperClass

default

public

protected

private

[...]

[...]

Subclass1

Not inherited

inherited

inherited

Not inherited

[...]

[...]

SubClass2

inherited

inherited

inherited

Not inherited

[...]

[...]

package1package2

only public and

protected

members are

inherited

Programming 2

Class Object

class Object

 Every Java class is
implicitly derived from
the base class Object

 Object has a number
of methods that all
our classes “get for
free”

BWI PROG2 SS11 v1.0 TeM

Object

+ equals(Object): boolean

+ hasCode():int

+ toString(): String

finalize

clone

+ notify

+ notifyAll

+ wait

not covered here,
important for

concurrency (threads)

Object methods

 Object.toString():String

 returns a String representation of the object

 default is: <type>@<hashcode>

e.g.: Circle@c17164

 this is the reason why everything can be an
argument to putln(): putln calls toString on
the argument and displays the returned
String

BWI PROG2 SS11 v1.0 TeM

Object methods

 Object.toString():String

 Always override toString()

 When practical, it should return all the
interesting information contained in the
object

 Provide access to all the information
contained in the value returned by toString()
– otherwise client code is forced to parse
that String

 call the superclass toString() with

super.toString(), if necessary

BWI PROG2 SS11 v1.0 TeM

Object methods

 Object.equals(Object):boolean

 indicates whether some other object is
“equal” to this one

 defines a null-consistent equivalence relation
(symmetric, reflexive, transitive)

 by default, every instance is equals only to
itself

 override only if equality other than object
equality is needed

 obey the contract, if you override equals –
other code (Collections) depend on it

BWI PROG2 SS11 v1.0 TeM

Object methods

 hashCode():int

 returns a hash code value for the object

 equal objects have same hash code

 unequal objects need not have different hash
code

 should be overridden when equals is
overridden

BWI PROG2 SS11 v1.0 TeM

Object methods

 Object.finalize():void

 called when the garbage collector eventually
destroys the object

 overriding should be avoided for
performance (and other) reasons

 Object.clone():Object

 creates and returns a copy of the object

 many technical complications when
overridden and/or used

BWI PROG2 SS11 v1.0 TeM

