
Avoid embarassing
OO mistakes

Fool around in
the Java Library

Head First

Java
Learn how threads
can change your life

Make Java concepts
stick to your brain

Kathy Sierra & Bert Bates

Avoid embarassingAvoid embarassing

JJaaaJaJ vvvava aavav

Bend your mind
around 42
Java puzzlesJava puzzlesJava puzzles

Your Brain on Java—A Learner’s Guide
2nd Edition - Covers Java 5.0

Make attractive
and useful GUIs

2 classes and objects

this is a new chapter 27

I was told there would be objects. In chapter 1, we put all of our code in the

main() method. That’s not exactly object-oriented. In fact, that’s not object-oriented at all. Well,

we did use a few objects, like the String arrays for the Phrase-O-Matic, but we didn’t actually

develop any of our own object types. So now we’ve got to leave that procedural world behind,

get the heck out of main(), and start making some objects of our own. We’ll look at what makes

object-oriented (OO) development in Java so much fun. We’ll look at the difference between

a class and an object. We’ll look at how objects can give you a better life (at least the program-

ming part of your life. Not much we can do about your fashion sense). Warning: once you get

to Objectville, you might never go back. Send us a postcard.

 A Trip to Objectville

We’re going to
Objectville! We’re

leaving this dusty ol’
procedural town for good.

I’ll send you a postcard.

Make it Stick

once upon a time in Objectville

28 chapter 2

the spec

 nce upon a time in a software shop, two
programmers were given the same spec and told to
“build it”. The Really Annoying Project Manager
forced the two coders to compete,

by promising that whoever delivers
first gets one of those cool Aeron™
chairs all the Silicon Valley guys have.
Larry, the procedural programmer, and
Brad, the OO guy, both knew this would
be a piece of cake.

Larry, sitting in his cube, thought to
himself, “What are the things this program
has to do? What procedures do we need?”.
And he answered himself , “rotate and
playSound.” So off he went to build the
procedures. After all, what is a program if not
a pile of procedures?

Brad, meanwhile, kicked back at the cafe
and thought to himself, “What are the things
in this program... who are the key players?” He
first thought of The Shapes. Of course, there
were other objects he thought of like the User, the Sound,
and the Clicking event. But he already had a library of code
for those pieces, so he focused on building Shapes. Read
on to see how Brad and Larry built their programs, and
for the answer to your burning question, “So, who got the
Aeron?”

Chair Wars
(or How Objects Can Change Your Life)

the chair

At Brad’s laptop at the cafe
Brad wrote a class for each of the three shapes

In Larry’s cube
As he had done a gazillion times before, Larry
set about writing his Important Procedures.
He wrote rotate and playSound in no time.
 rotate(shapeNum) {
 // make the shape rotate 360º

 }

 playSound(shapeNum) {

 // use shapeNum to lookup which

 // AIF sound to play, and play it

 }
}

}

}

O

you are here4

classes and objects

29

There will be an amoeba shape

on the screen, with the others.

When the user clicks on the

amoeba, it will rotate like the

others, and play a .hif sound file

But wait! There’s been a spec change.
“OK, technically you were fi rst, Larry,” said the Manager, “but we have to add just one
tiny thing to the program. It’ll be no problem for crack programmers like you two.”

“If I had a dime for every time I’ve heard that one”, thought Larry, knowing that spec-
change-no-problem was a fantasy. “And yet Brad looks strangely serene. What’s up with
that?” Still, Larry held tight to his core belief that the OO way, while cute, was just
slow. And that if you wanted to change his mind, you’d have to pry it from his cold,
dead, carpal-tunnelled hands.

Larry thought he’d nailed it. He could almost feel the rolled
steel of the Aeron beneath his...

what got added to the spec

Back in Larry’s cube
The rotate procedure would still work; the code used
a lookup table to match a shapeNum to an actual
shape graphic. But playSound would have to change.
And what the heck is a .hif fi le?

playSound(shapeNum) {
 // if the shape is not an amoeba,
 // use shapeNum to lookup which
 // AIF sound to play, and play it
 // else
 // play amoeba .hif sound
 }
It turned out not to be such a big deal, but it still
made him queasy to touch previously-tested code. Of
all people, he should know that no matter what the
project manager says, the spec always changes.

At Brad’s laptop at the beach
Brad smiled, sipped his margarita, and wrote one
new class. Sometimes the thing he loved most
about OO was that he didn’t have to touch code
he’d already tested and delivered. “Flexibility,
extensibility,...” he mused, refl ecting on the
benefi ts of OO.

Amoeba

rotate() {
 // code to rotate an amoeba
 }

playSound() {
 // code to play the new
 // .hif file for an amoeba
 }

.

once upon a time in Objectville

30 chapter 2

Ameoba rotation point in Larry

and Brad’s version:

Where the ameba rotation

point should be:

What the spec conveniently
forgot to mention

(Hah! So much for that foofy OO nonsense). But the smirk on Larry’s face melted when the
Really Annoying Project Manager said (with that tone of disappointment), “Oh, no, that’s not
how the amoeba is supposed to rotate...”

Turns out, both programmers had written their rotate code like this:

 1) determine the rectangle that surrounds the shape

 2) calculate the center of that rectangle, and rotate the shape around that point.

But the amoeba shape was supposed to rotate around a point on one end, like a clock hand.

“I’m toast.” thought Larry, visualizing charred Wonderbread™. “Although, hmmmm. I could
just add another if/else to the rotate procedure, and then just hard-code the rotation point
code for the amoeba. That probably won’t break anything.” But the little voice at the back of
his head said, “Big Mistake. Do you honestly think the spec won’t change again?”

Larry snuck in just moments ahead of Brad.

Back in Larry’s cube
He fi gured he better add rotation point arguments
to the rotate procedure. A lot of code was affected.
Testing, recompiling, the whole nine yards all over
again. Things that used to work, didn’t.

 rotate(shapeNum, xPt, yPt) {
 // if the shape is not an amoeba,

 // calculate the center point

 // based on a rectangle,

 // then rotate

 // else

 // use the xPt and yPt as

 // the rotation point offset

 // and then rotate

 }

 At Brad’s laptop on his lawn
chair at the Telluride Bluegrass Festival
Without missing a beat, Brad modifi ed the rotate
method, but only in the Amoeba class. He never
touched the tested, working,
compiled code for the other
parts of the program. To
give the Amoeba a rota-
tion point, he added an
attribute that all Amoebas
would have. He modi-
fi ed, tested, and delivered
(wirelessly) the revised
program during a single
Bela Fleck set.

 for the other

that all Amoebas

fi ed, tested, and delivered

Amoeba

int xPoint
int yPoint

rotate() {
 // code to rotate an amoeba
 // using amoeba’s x and y
 }

playSound() {
 // code to play the new
 // .hif file for an amoeba
 }

you are here4

classes and objects

31

So, Brad the OO guy got the chair, right?
Not so fast. Larry found a flaw in Brad’s approach. And,
since he was sure that if he got the chair he’d also get Lucy
in accounting, he had to turn this thing around.

LARRY: You’ve got duplicated code! The rotate
procedure is in all four Shape things.

BRAD: It’s a method, not a procedure. And they’re classes,
not things.

LARRY: Whatever. It’s a stupid design. You have to
maintain four different rotate “methods”. How can that
ever be good?

BRAD: Oh, I guess you didn’t see the final design. Let me
show you how OO inheritance works, Larry.

What Larry wanted
(figured the chair would impress her)

They’re Shapes, and they all rotate and
playSound. So I abstracted out the
common features and put them into a
new class called Shape.

Shape

rotate()
playSound()

TriangleSquare Circle Amoeba

Shape

rotate()
playSound()

superclass

subclasses

Then I linked the other
four shape classes to
the new Shape class,
in a relationship called
inheritance.

Triangle

rotate()
playSound()

Square

rotate()
playSound()

Circle

rotate()
playSound()

I looked at what all four
classes have in common.

Amoeba

rotate()
playSound()

1

2

3

You can read this as, “Square inherits from Shape”,
“Circle inherits from Shape”, and so on. I removed
rotate() and playSound() from the other shapes, so now
there’s only one copy to maintain.

The Shape class is called the superclass of the other four
classes. The other four are the subclasses of Shape. The
subclasses inherit the methods of the superclass. In other
words, if the Shape class has the functionality, then the
subclasses automatically get that same functionality.

once upon a time in Objectville

32 chapter 2

What about the Amoeba rotate()?
LARRY: Wasn’t that the whole problem here — that the amoeba shape
had a completely different rotate and playSound procedure?

BRAD: Method.

LARRY: Whatever. How can amoeba do something different if
it “inherits” its functionality from the Shape class?

BRAD: That’s the last step. The Amoeba class overrides the
methods of the Shape class. Then at runtime, the JVM knows exactly
which rotate() method to run when someone tells the Amoeba to rotate.

O

verride Now

Ask Me How

I made the Amoeba class override
the rotate() method of the
superclass Shape.

Overriding just means that a
subclass redefines one of its
inherited methods when it needs
to change or extend the behavior
of that method.

4

TriangleSquare Circle Amoeba

rotate()
// amoeba-specific
// rotate code

playSound()
// amoeba-specific
// sound code

Shape

rotate()
playSound()

superclass
(more abstract)

subclasses
(more specific)

Overriding methods

LARRY: How do you “tell” an Amoeba to
do something? Don’t you have to call the
procedure, sorry—method, and then tell it
which thing to rotate?

BRAD: That’s the really cool thing about OO.
When it’s time for, say, the triangle to rotate,
the program code invokes (calls) the rotate()
method on the triangle object. The rest of the
program really doesn’t know or care how the
triangle does it. And when you need to add
something new to the program, you just write
a new class for the new object type, so the new
objects will have their own behavior.

I can take
care of myself.
I know how an Amoeba

is supposed to rotate
and play a sound.

I know how a Shape is
supposed to behave. Your
job is to tell me what to

do, and my job is to make it happen.
Don’t you worry your little program-
mer head about how I do it.

I made the Amoeba class override
the rotate() and playSound()
methods of the superclass Shape.

Overriding just means that a
subclass redefines one of its
inherited methods when it needs
to change or extend the behavior
of that method.{

{

{

{

you are here4

classes and objects

33

metacognitive tip
If you’re stuck on an exercise, try talking about

it out loud. Speaking (and hearing) activates
a different part of your brain. Although it

works best if you have another person to
discuss it with, pets work too. That’s how

our dog learned polymorphism.

The suspense is killing me.
Who got the chair?

Amy from the second fl oor.

(unbeknownst to all, the Project
Manager had given the spec to
three programmers.)

Amy from the second fl oor.

(unbeknownst to all, the Project
Manager had given the spec to
three

“It helps me design in a more natural way. Things
have a way of evolving.”
 -Joy, 27, software architect

“Not messing around with code I’ve already
tested, just to add a new feature.”
 -Brad, 32, programmer

“I like that the data and the methods that oper-
ate on that data are together in one class.”
 -Josh, 22, beer drinker

“Reusing code in other applications. When I write
a new class, I can make it fl exible enough to be
used in something new, later.”
 -Chris, 39, project manager

“I can’t believe Chris just said that. He hasn’t
written a line of code in 5 years.”
 -Daryl, 44, works for Chris

“Besides the chair?”
 -Amy, 34, programmer

What do you like about OO?
Time to pump some neurons.

You just read a story bout a procedural
programmer going head-to-head with an OO
programmer. You got a quick overview of some
key OO concepts including classes, methods, and
attributes. We’ll spend the rest of the chapter
looking at classes and objects (we’ll return to
inheritance and overriding in later chapters).

Based on what you’ve seen so far (and what you
may know from a previous OO language you’ve
worked with), take a moment to think about
these questions:

What are the fundamental things you need to
think about when you design a Java class? What
are the questions you need to ask yourself?
If you could design a checklist to use when
you’re designing a class, what would be on the
checklist?

brain
powerA

34 chapter 2

thinking about objects

ShoppingCart

cartContents

addToCart()
removeFromCart()
checkOut()

knows

does

Button

label
color

setColor()
setLabel()
dePress()
unDepress()

knows

does

Alarm

alarmTime
alarmMode

setAlarmTime()
setAlarm()
isAlarmSet()
snooze()

knows

does

When you design a class, think about the objects that
will be created from that class type. Think about:

 ■ things the object knows

 ■ things the object does

Things an object knows about itself are called

 ■ instance variables

Things an object can do are called

 ■ methods

Song

title
artist

setTitle()
setArtist()
play()

instance
variables
(state)

methods
(behavior)

knows

does

Things an object knows about itself are called instance
variables. They represent an object’s state (the data), and
can have unique values for each object of that type.

Think of instance as another way of saying object.

Things an object can do are called methods. When you
design a class, you think about the data an object will need
to know about itself, and you also design the methods
that operate on that data. It’s common for an object to
have methods that read or write the values of the instance
variables. For example, Alarm objects have an instance
variable to hold the alarmTime, and two methods for
getting and setting the alarmTime.

So objects have instance variables and methods, but those
instance variables and methods are designed as part of the
class.

Sharpen your pencil
Fill in what a television object
might need to know and do.

Alarm

alarmTime
alarmMode

setAlarmTime()
getAlarmTime()
isAlarmSet()
snooze()

knows

does

you are here4

classes and objects

35

What’s the difference between
a class and an object?

 A class is a blueprint for an object. It tells the
virtual machine how to make an object of that
particular type. Each object made from that
class can have its own values for the
instance variables of that class. For
example, you might use the Button
class to make dozens of different
buttons, and each button might have
its own color, size, shape, label, and so on.

A class is not an object.

(but it’s used to construct them)

class

JVM

Look at it this way...
One analogy for objects is a packet of unused Rolodex™ cards.
Each card has the same blank fields (the instance variables). When
you fill out a card you are creating an instance (object), and the
entries you make on that card represent its state.

The methods of the class are the things you do to a particular card;
getName(), changeName(), setName() could all be methods for
class Rolodex.

So, each card can do the same things (getName(), changeName(),
etc.), but each card knows things unique to that particular card.

An object is like one entry in your address book.

36 chapter 2

class DogTestDrive {
 public static void main (String[] args) {

 Dog d = new Dog();

 d.size = 40;
 d.bark();
 }
}

DOG

size
breed
name

bark()

making objects

class Dog {

 int size;
 String breed;
 String name;

 void bark() {
 System.out.println(“Ruff! Ruff!”);
 }
}

Making your first object
So what does it take to create and use an object? You need two classes. One
class for the type of object you want to use (Dog, AlarmClock, Television,
etc.) and another class to test your new class. The tester class is where you put
the main method, and in that main() method you create and access objects
of your new class type. The tester class has only one job: to try out the meth-
ods and variables of your new object class type.

From this point forward in the book, you’ll see two classes in many of
our examples. One will be the real class – the class whose objects we
really want to use, and the other class will be the tester class, which we
call <whateverYourClassNameIs> TestDrive. For example, if we make a
Bungee class, we’ll need a BungeeTestDrive class as well. Only the
<someClassName>TestDrive class will have a main() method, and its sole
purpose is to create objects of your new type (the not-the-tester class), and
then use the dot operator (.) to access the methods and variables of the new
objects. This will all be made stunningly clear by the following examples.

1 Write your class

class DogTestDrive {
 public static void main (String[] args) {
 // Dog test code goes here
 }
}

2 Write a tester (TestDrive) class

3 In your tester, make an object and access
the object’s variables and methods

instance variables

a method

just a main method

(we’re gonn
a put cod

e

in it in t
he next s

tep)

make a Dog object
use the dot operator (.) to set the size of the Dogand to call its bark() method

 dot
operator

The dot operator (.) gives
you access to an object’s
state and behavior (instance
variables and methods).

// make a new object

Dog d = new Dog();

// tell it to bark by using the
// dot operator on the
// variable d to call bark()

d.bark();

// set its size using the
// dot operator

d.size = 40;

The Dot Operator (.)

If you already have some OO savvy,
you’ll know we’re not using encapsulation.
We’ll get there in chapter 4.

you are here4

classes and objects

37

Sharpen your pencil

object 1

object 2

object 3

title

genre

rating

title

genre

rating

title

genre

rating

MOVIE

title
genre
rating

playIt()

class Movie {
 String title;
 String genre;
 int rating;

 void playIt() {
 System.out.println(“Playing the movie”);
 }
}

public class MovieTestDrive {
 public static void main(String[] args) {
 Movie one = new Movie();
 one.title = “Gone with the Stock”;
 one.genre = “Tragic”;
 one.rating = -2;
 Movie two = new Movie();
 two.title = “Lost in Cubicle Space”;
 two.genre = “Comedy”;
 two.rating = 5;
 two.playIt();
 Movie three = new Movie();
 three.title = “Byte Club”;
 three.genre = “Tragic but ultimately uplifting”;
 three.rating = 127;
 }
}

Making and testing Movie objects

The MovieTestDrive class creates objects (instances) of
the Movie class and uses the dot operator (.) to set the
instance variables to a specific value. The MovieTestDrive
class also invokes (calls) a method on one of the objects.
Fill in the chart to the right with the values the three
objects have at the end of main().

38 chapter 2

GuessGame

p1
p2
p3

startGame()startGame()

get the heck out of main

Quick! Get out of main!
As long as you’re in main(), you’re not really in Objectville. It’s fi ne for a test
program to run within the main method, but in a true OO application, you
need objects talking to other objects, as opposed to a static main() method
creating and testing objects.

The two uses of main:

 ■ to test your real class

 ■ to launch/start your Java application

A real Java application is nothing but objects talking to other objects. In this
case, talking means objects calling methods on one another. On the previous
page, and in chapter 4 , we look at using a main() method from a separate
TestDrive class to create and test the methods and variables of another class. In
chapter 6 we look at using a class with a main() method to start the ball rolling
on a real Java application (by making objects and then turning those objects
loose to interact with other objects, etc.)

As a ‘sneak preview’, though, of how a real Java application might behave,
here’s a little example. Because we’re still at the earliest stages of learning Java,
we’re working with a small toolkit, so you’ll fi nd this program a little clunky
and ineffi cient. You might want to think about what you could do to improve
it, and in later chapters that’s exactly what we’ll do. Don’t worry if some of the
code is confusing; the key point of this example is that objects talk to objects.

The Guessing Game

Summary:

The guessing game involves a ‘game’ object and three ‘player’ objects. The game gen-
erates a random number between 0 and 9, and the three player objects try to guess
it. (We didn’t say it was a really exciting game.)

Classes:

GuessGame.class Player.class GameLauncher.class

The Logic:

1) The GameLauncher class is where the application starts; it has the main() method.

2) In the main() method, a GuessGame object is created, and its startGame() method
is called.

3) The GuessGame object’s startGame() method is where the entire game plays out.
It creates three players, then “thinks” of a random number (the target for the players
to guess). It then asks each player to guess, checks the result, and either prints out
information about the winning player(s) or asks them to guess again.

Player

number

guess()guess()

instance variablesforthe threeplayers

the numberthis playerguessed

method formaking a guess

GameLauncher

main(String[] args)main(String[] args)

makes a GuessGameobject andtells it tostartGame

you are here4

classes and objects

39

public class GuessGame {
 Player p1;
 Player p2;
 Player p3;

 public void startGame() {
 p1 = new Player();
 p2 = new Player();
 p3 = new Player();

 int guessp1 = 0;
 int guessp2 = 0;
 int guessp3 = 0;

 boolean p1isRight = false;
 boolean p2isRight = false;
 boolean p3isRight = false;

 int targetNumber = (int) (Math.random() * 10);
 System.out.println(“I’m thinking of a number between 0 and 9...”);

 while(true) {
 System.out.println(“Number to guess is “ + targetNumber);

 p1.guess();
 p2.guess();
 p3.guess();

 guessp1 = p1.number;
 System.out.println(“Player one guessed “ + guessp1);

 guessp2 = p2.number;
 System.out.println(“Player two guessed “ + guessp2);

 guessp3 = p3.number;
 System.out.println(“Player three guessed “ + guessp3);

 if (guessp1 == targetNumber) {
 p1isRight = true;
 }
 if (guessp2 == targetNumber) {
 p2isRight = true;
 }
 if (guessp3 == targetNumber) {
 p3isRight = true;
 }

 if (p1isRight || p2isRight || p3isRight) {

 System.out.println(“We have a winner!”);
 System.out.println(“Player one got it right? “ + p1isRight);
 System.out.println(“Player two got it right? “ + p2isRight);
 System.out.println(“Player three got it right? “ + p3isRight);
 System.out.println(“Game is over.”);
 break; // game over, so break out of the loop

 } else {
 // we must keep going because nobody got it right!
 System.out.println(“Players will have to try again.”);
 } // end if/else
 } // end loop
 } // end method
} // end class

GuessGame has three instance variables for the three Player objects

create three Player objects and assign them to the three Player instance variables
declare three variables to hold the three guesses the Players make

declare three variables to hold a true or false based on the player’s answer
make a ‘target’ number that the players have to guess

call each player’s guess() method

get each player’s guess (the result of their guess() method running) by accessing the number variable of each player

check each player’s guess to see if it matches the target number. If a player is right, then set that player’s variable to be true (remember, we set it false by default)

if player one OR player two OR player three is right... (the || operator means OR)

otherwise, stay in the loop and ask the
players for another guess.

40 chapter 2

File Edit Window Help Explode

%java GameLauncher
I’m thinking of a number between 0 and 9...

Number to guess is 7

I’m guessing 1

I’m guessing 9

I’m guessing 9

Player one guessed 1

Player two guessed 9

Player three guessed 9

Players will have to try again.

Number to guess is 7

I’m guessing 3

I’m guessing 0

I’m guessing 9

Player one guessed 3

Player two guessed 0

Player three guessed 9

Players will have to try again.

Number to guess is 7

I’m guessing 7

I’m guessing 5

I’m guessing 0

Player one guessed 7

Player two guessed 5

Player three guessed 0

We have a winner!

Player one got it right? true

Player two got it right? false

Player three got it right? false

Game is over.

Output (it will be different each time you run it)

Running the Guessing Game

Guessing Game

public class Player {
 int number = 0; // where the guess goes

 public void guess() {
 number = (int) (Math.random() * 10);
 System.out.println(“I’m guessing “
 + number);
 }
}

public class GameLauncher {
 public static void main (String[] args) {
 GuessGame game = new GuessGame();
 game.startGame();
 }
}

Java takes out the
Garbage
Each time an object is created
in Java, it goes into an area of

memory known as The Heap.
All objects—no matter when, where,

or how they’re created – live on the
heap. But it’s not just any old memory
heap; the Java heap is actually called the
Garbage-Collectible Heap. When you
create an object, Java allocates memory
space on the heap according to how
much that particular object needs. An
object with, say, 15 instance variables,
will probably need more space than an
object with only two instance variables.
But what happens when you need to
reclaim that space? How do you get an
object out of the heap when you’re done
with it? Java manages that memory
for you! When the JVM can ‘see’ that an
object can never be used again, that
object becomes eligible for garbage
collection. And if you’re running low on
memory, the Garbage Collector will run,
throw out the unreachable objects, and
free up the space, so that the space can
be reused. In later chapters you’ll learn
more about how this works.

you are here4

classes and objects

41

 BULLET POINTS
ß Object-oriented programming lets you extend

a program without having to touch previously-
tested, working code.

ß All Java code is defined in a class.

ß A class describes how to make an object of
that class type. A class is like a blueprint.

ß An object can take care of itself; you don’t
have to know or care how the object does it.

ß An object knows things and does things.

ß Things an object knows about itself are called
instance variables. They represent the state
of an object.

ß Things an object does are called methods.
They represent the behavior of an object.

ß When you create a class, you may also want
to create a separate test class which you’ll
use to create objects of your new class type.

ß A class can inherit instance variables and
methods from a more abstract superclass.

ß At runtime, a Java program is nothing more
than objects ‘talking’ to other objects.

there are noDumb Questions
Q: What if I need global
variables and methods? How
do I do that if everything has to
go in a class?

A: There isn’t a concept of
‘global’ variables and methods in
a Java OO program. In practical
use, however, there are times
when you want a method (or
a constant) to be available
to any code running in any
part of your program. Think
of the random() method in
the Phrase-O-Matic app; it’s a
method that should be callable
from anywhere. Or what about
a constant like pi? You’ll learn
in chapter 10 that marking
a method as public and
static makes it behave much
like a ‘global’. Any code, in any
class of your application, can
access a public static method.
And if you mark a variable as
public, static, and fi nal
– you have essentially made a
globally-available constant.

Q: Then how is this object-
oriented if you can still make
global functions and global
data?

A: First of all, everything
in Java goes in a class. So the
constant for pi and the method
for random(), although both
public and static, are defined
within the Math class. And you
must keep in mind that these
static (global-like) things are the
exception rather than the rule
in Java. They represent a very
special case, where you don’t
have multiple instances/objects.

Q: What is a Java program?
What do you actually deliver?

A: A Java program is a pile
of classes (or at least one class).
In a Java application, one of
the classes must have a main
method, used to start-up the
program. So as a programmer,
you write one or more classes.
And those classes are what you
deliver. If the end-user doesn’t
have a JVM, then you’ll also
need to include that with
your application’s classes,
so that they can run your
program. There are a number
of installer programs that
let you bundle your classes
with a variety of JVM’s (say, for
different platforms), and put it all
on a CD-ROM. Then the end-user
can install the correct version of
the JVM (assuming they don’t
already have it on their machine.)

Q: What if I have a hundred
classes? Or a thousand? Isn’t
that a big pain to deliver
all those individual fi les?
Can I bundle them into one
Application Thing?

A: Yes, it would be a big
pain to deliver a huge bunch of
individual files to your end-users,
but you won’t have to. You can
put all of your application files
into a Java Archive – a .jar file –
that’s based on the pkzip format.
In the jar file, you can include
a simple text file formatted as
something called a manifest, that
defines which class in that jar
holds the main() method that
should run.

 a Java program?
deliver?

A Java program is a pile
class).

the classes must have a main

program. So as a programmer,
you write one or more classes.
And those classes are what you
deliver. If the end-user doesn’t

program. There are a number

with a variety of JVM’s (say, for

Make it Sticki kkk
A class is like a recipe.Objects are like cookies.

42 chapter 2

 A
class TapeDeck {

 boolean canRecord = false;

 void playTape() {
 System.out.println(“tape playing”);
 }

 void recordTape() {
 System.out.println(“tape recording”);
 }
}

class TapeDeckTestDrive {
 public static void main(String [] args) {

 t.canRecord = true;
 t.playTape();

 if (t.canRecord == true) {
 t.recordTape();

 }

 }

}

 B
class DVDPlayer {

 boolean canRecord = false;

 void recordDVD() {
 System.out.println(“DVD recording”);
 }
}

class DVDPlayerTestDrive {
 public static void main(String [] args) {

 DVDPlayer d = new DVDPlayer();
 d.canRecord = true;
 d.playDVD();

 if (d.canRecord == true) {
 d.recordDVD();

 }

 }

}

Each of the Java files on this page
represents a complete source file.
Your job is to play compiler and

determine whether each of
these files will compile.
If they won’t compile,
how would you fix them,

and if they do compile,
what would be their output?

BE the compilerExercise

exercise: Be the Compiler

you are here4

classes and objects

43

A Java program is all scrambled up on
the fridge. Can you reconstruct the
code snippets to make a working Java
program that produces the output listed
below? Some of the curly braces fell on
the floor and they were too small to pick
up, so feel free to add as many of those
as you need.

boolean topHat =
 true;

boolean snare =
true;

void playSnare() {

 System.out.println(“bang bang ba-b
ang”);

}

 if (d.snare == true) { d.playSnare(); }

 d.snare = false;

class DrumKitTestDrive {

 d.p
layTopH

at();

 public static void main(String [] args) {

File Edit Window Help Dance

% java DrumKitTestDrive
bang bang ba-bang
ding ding da-ding

 void playTopHat () {
 System.out.println(“ding ding da-ding”); }

class DrumKit {

boolean topHat =
 true;

DrumKit d = new DrumKit();

Code Magnets

DrumKit d = new DrumKit();

d.playSnare();

Exercise

44 chapter 2

x == 3

x == 4

x < 4

x < 5

x > 0

x > 1

Pool Puzzle
Your job is to take code snippets from

the pool and place them into the
blank lines in the code. You may
use the same snippet more than
once, and you won’t need to use
all the snippets. Your goal is to

make classes that will compile and
run and produce the output listed.

public class EchoTestDrive {
 public static void main(String [] args) {
 Echo e1 = new Echo();

 int x = 0;

 while (___________) {

 e1.hello();

 if (____________) {

 e2.count = e2.count + 1;

 }

 if (____________) {

 e2.count = e2.count + e1.count;

 }

 x = x + 1;

 }
 System.out.println(e2.count);
 }
}

 class ____________ {

 int _________ = 0;

 void ___________ {

 System.out.println(“helloooo... “);
 }
 }

Note: Each snippet
from the pool can be
used more than once!

File Edit Window Help Implode

%java EchoTestDrive

helloooo...

helloooo...

helloooo...

helloooo...

10

Output

e1 = e1 + 1;

e1 = count + 1;

e1.count = count + 1;

e1.count = e1.count + 1;

e2 = e1;

Echo e2;

Echo e2 = e1;

Echo e2 = new Echo();

x

y

e2

count

Echo

Tester

echo()

count()

hello()

Bonus Question !

If the last line of output was
24 instead of 10 how would
you complete the puzzle ?

puzzle: Pool Puzzle

you are here4

classes and objects

45

Who am I?

I am compiled from a .java file.

My instance variable values can
be different from my buddy’s
values.

I behave like a template.

I like to do stuff.

I can have many methods.

I represent ‘state’.

I have behaviors.

I am located in objects.

I live on the heap.

I am used to create object instances.

My state can change.

I declare methods.

I can change at runtime.

class

A bunch of Java components, in full costume, are playing a party
game, “Who am I?” They give you a clue, and you try to guess who
they are, based on what they say. Assume they always tell the truth
about themselves. If they happen to say something that could be true
for more than one of them, choose all for whom that sentence can
apply. Fill in the blanks next to the sentence with the names of one or
more attendees. The first one’s on us.

Tonight’s attendees:

Class Method Object Instance variable

46 chapter 2

A

B

Code Magnets:

File Edit Window Help Dance

% java DrumKitTestDrive
bang bang ba-bang
ding ding da-ding

class DrumKit {

 boolean topHat = true;
 boolean snare = true;

 void playTopHat() {
 System.out.println(“ding ding da-ding”);
 }

 void playSnare() {
 System.out.println(“bang bang ba-bang”);
 }
}

class DrumKitTestDrive {
 public static void main(String [] args) {

 DrumKit d = new DrumKit();
 d.playSnare();
 d.snare = false;
 d.playTopHat();

 if (d.snare == true) {
 d.playSnare();
 }
 }
}

class TapeDeck {
 boolean canRecord = false;
 void playTape() {
 System.out.println(“tape playing”);
 }
 void recordTape() {
 System.out.println(“tape recording”);
 }
}

class TapeDeckTestDrive {
 public static void main(String [] args) {

 TapeDeck t = new TapeDeck();
 t.canRecord = true;
 t.playTape();

 if (t.canRecord == true) {
 t.recordTape();
 }
 } We’ve got the template, now we have
} to make an object !

class DVDPlayer {
 boolean canRecord = false;
 void recordDVD() {
 System.out.println(“DVD recording”);
 }
 void playDVD () {
 System.out.println(“DVD playing”);
 }
}

class DVDPlayerTestDrive {
 public static void main(String [] args) {
 DVDPlayer d = new DVDPlayer();
 d.canRecord = true;
 d.playDVD();
 if (d.canRecord == true) {
 d.recordDVD();
 }
 } The line: d.playDVD(); wouldn’t
} compile without a method !

Exercise Solutions
Exercise

Be the Compiler:

exercise solutions

you are here4

classes and objects

47

public class EchoTestDrive {
 public static void main(String [] args) {
 Echo e1 = new Echo();

 Echo e2 = new Echo(); // the correct answer
 - or -
 Echo e2 = e1; // is the bonus answer!
 int x = 0;

 while (x < 4) {
 e1.hello();

 e1.count = e1.count + 1;
 if (x == 3) {
 e2.count = e2.count + 1;

 }

 if (x > 0) {
 e2.count = e2.count + e1.count;

 }

 x = x + 1;

 }
 System.out.println(e2.count);
 }
}

 class Echo {
 int count = 0;
 void hello() {
 System.out.println(“helloooo... “);
 }
 }

File Edit Window Help Assimilate

%java EchoTestDrive

helloooo...

helloooo...

helloooo...

helloooo...

10

I am compiled from a .java file.

My instance variable values can be
different from my buddy’s values.

I behave like a template.

I like to do stuff.

I can have many methods.

I represent ‘state’.

I have behaviors.

I am located in objects.

I live on the heap.

I am used to create object
instances.

My state can change.

I declare methods.

I can change at runtime.

class

object

class

object, method

class, object

instance variable

object, class

method, instance variable

object

class

object, instance variable

class

object, instance variable

Pool Puzzle

Who am I?

Note: both classes and objects are said to have state and behavior.
They’re defined in the class, but the object is also said to ‘have’
them. Right now, we don’t care where they technically live.

Puzzle Solutions

