
abstract abstrakt[ne] Something which cannot be directly
instantiated; the opposite of concrete.

abstract class abstraktklass A class that cannot be directly instantiated.
Contrast: concrete class.

abstraction abstraktsioon The creation of a view or model that
suppresses unnecessary details to focus on a
specific set of details of interest The essential
characteristics of an entity that distinguish it
from all other kinds of entities. An abstraction
defines a boundary relative to the perspective
of the viewer.

acceptance vastuvõtmine An action by which the customer accepts
ownership of software products as a partial or
complete performance of a contract.

action toiming The specification of an executable statement
that forms an abstraction of a computational
procedure. An action typically results in a
change in the state of the system, and can be
realized by sending a message to an object or
modifying a link or a value of an attribute.

action sequence toimingujada An expression that resolves to a sequence of
actions.

action state toimingu olek A state that represents the execution of an
atomic action, typically the invocation of an
operation.

activation aktiveerimine The execution of an action.
active class aktiivne klass A class representing a thread of control in the

system.A class whose instances are active
objects. See: active object.

activity tegevus A unit of work a worker may be asked to
perform

active object aktiivne objekt An object that owns a thread and can initiate
control activity. An instance of active class.
See: active class, thread.

activity graph tegevusskeem A special case of a state machine that is used
to model processes involving one or more
classifiers. Contrast: statechart diagram.
Synonym: activity diagram.

actor (instance) tegija(isend) Someone or something, outside the system or
business that interacts with the system or
business.

actor class tegijaklass Defines a set of actor instances, in which each
actor instance plays the same role in relation
to the system or business.A coherent set of
roles that users of use cases play when
interacting with these use cases. An actor has
one role for each use case with which it
communicates.

actor-
generalization

tegija üldistus An actor-generalization from an actor class
(descendant) to another actor class (ancestor)
indicates that the descendant inherits the role
the ancestor can play in a use case.

actual parameter tegelik parameeter Synonym: argument.
aggregate [class] agregaat A class that represents the "whole" in an

aggregation (whole-part) relationship. See:
aggregation.

aggregation agregatsioon An association that models a whole-part
relationship between an aggregate (the whole)
and its parts.A special form of association that
specifies a whole-part relationship between
the aggregate (whole) and a component part.
See: composition.

analysis analüüs The part of the software development process
whose primary purpose is to formulate a

whose primary purpose is to formulate a
model of the problem domain. Analysis
focuses on what to do, design focuses on how
to do it. See design.

analysis class analüüsiklass An abstraction of a role played by a design
element in the system, typically within the
context of a use-case realization. Analysis
classes may provide an abstraction for several
role, representing the common behavior of
those roles. Analysis classes typically evolve
into one or more design elements (e.g. design
classes and/or capsules, or design
subsystems).

analysis &
design

analüüs ja
projekteerimine

A core workflow in the Unified Process,
whose purpose is to show how the system's
use cases will be realized in implementation;
(general) activities during which strategic and
tactical decisions are made to meet the
required functional and quality requirements
of a system. For the result of analysis and
design activities, see "Design Model."

analysis
mechanism

analüüsimehhanism An architectural mechanism used early in the
design process, during the period of discovery
when key classes and subsystems are being
identified. Typically analysis mechanisms
capture the key aspects of a solution in a way
that is implementation independent. Analysis
mechanisms are usually unrelated to the
problem domain, but instead are "computer
science" concepts. They provide specific
behaviors to a domain-related class or
component, or correspond to the
implementation of cooperation between
classes and/or components. They may be
implemented as a framework. Examples
include mechanisms to handle persistence,
inter-process communication, error or fault
handling, notification, and messaging, to name
a few.

analysis time analüüsiaeg Refers to something that occurs during an
analysis phase of the software development
process. See: design time, modeling time.

architectural
baseline

arhitektuuri arendusalus The baseline at the end of the Elaboration
phase, at which time the foundation structure
and behavior of the system is stabilized.

architectural
mechanism

arhitektuurimehhanism An architectural mechanism represents a
common solution to a frequently encountered
problem. They may be patterns of structure,
patterns of behavior, or both.

architectural
pattern

arhitektuurimall A description of an archetypal solution to a
recurrent design problem that reflects well-
proven design experience. Presented in the
Software Architecture Document.

architectural
view

arhitektuurivaade A view of the system architecture from a
given perspective; focuses primarily on
structure, modularity, essential components,
and the main control flows.

architecture arhitektuur The highest level concept of a system in its
environment [IEEE]. The architecture of a
software system (at a given point in time) is its
organization or structure of significant
components interacting through interfaces,
those components being composed of

successively smaller components and
interfaces.The organizational structure of a
system. An architecture can be recursively
decomposed into parts that interact through
interfaces, relationships that connect parts, and
constraints for assembling parts. Parts that
interact through interfaces include classes,
components and subsystems.

argument argument A binding for a parameter that resolves to a
run-time instance. Synonym: actual
parameter. Contrast: parameter.

artifact tehis (1) A piece of information that (1) is
produced, modified, or used by a process, (2)
defines an area of responsibility, and (3) is
subject to version control. An artifact can be a
model, a model element, or a document. A
document can enclose other documents. A
piece of information that is used or produced
by a software development process. An
artifact can be a model, a description, or
software. Synonym: product.

artifact
guidelines

tehisejuhised A description of how to work with a particular
artifact, including how to create and revise the
artifact.

artifact set tehistik A set of related artifacts which presents one
aspects of the system. Artifact sets cut across
core workflows, as several artifacts are used in
a number of core workflows (e.g. the Risk
List, the Software Architecture Document, and
the Iteration Plan).

association side A relationship that models a bi-directional
semantic connection among instances.The
semantic relationship between two or more
classifiers that specifies connections among
their instances.

association class sidemeklass A model element that has both association and
class properties. An association class can be
seen as an association that also has class
properties, or as a class that also has
association properties.

association end sidemeots The endpoint of an association, which
connects the association to a classifier.

asynchronous
action

asünkroonne toiming A request where the sending object does not
pause to wait for results. Contrast:
synchronous action.

attribute atribuut An attribute defined by a class represents a
named property of the class or its objects. An
attribute has a type that defines the type of its
instances.A feature within a classifier that
describes a range of values that instances of
the classifier may hold.

baseline arendusalus A reviewed and approved release of artifacts
that constitutes an agreed basis for further
evolution or development and that can be
changed only through a formal procedure,
such as change management and
configuration control.

behavior käitumine The observable effects of an operation or
event, including its results.

behavioral
feature

käitumisjoon A dynamic feature of a model element, such as
an operation or method.

behavioral model
aspect

mudeli käitumisaspekt A model aspect that emphasizes the behavior
of the instances in a system, including their
methods, collaborations, and state histories.

methods, collaborations, and state histories.
binary
association

kahendasssotsiatsioon An association between two classes. A special
case of an n-ary association.

binding sidumine The creation of a model element from a
template by supplying arguments for the
parameters of the template.

boolean Boole'i muutuja An enumeration whose values are true and
false.

boolean
expression

Boole'i avaldis An expression that evaluates to a boolean
value.

boundary class piiriklass A class used to model communication
between the system's environments and its
inner workings.

build redaktsioon An operational version of a system or part of a
system that demonstrates a subset of the
capabilities to be provided in the final product.

call kutse An action state that invokes an operation on a
classifier.

capsule kapsel A specific design pattern which represents an
encapsulated thread of control in the system.
A capsule is a stereotyped class with a
specific set of required and restricted
associations and properties.

cardinality võimsus The number of elements in a set. Contrast:
multiplicity.

change control
board (CCB)

muutmisnõukogu The role of the CCB is to provide a central
control mechanism to ensure that every
change request is properly considered,
authorized and coordinated.

child tütar In a generalization relationship, the
specialization of another element, the parent.
See: subclass, subtype. Contrast: parent.

change
management

muutusehaldus The activity of controlling and tracking
changes to artifacts. See also: scope
management.

change request
(CR)

muutmistaotlus A general term for any request from a
stakeholder to change an artifact or process.
Documented in the Change Request is
information on the origin and impact of the
current problem, the proposed solution, and its
cost. See also: enhancement request, defect.

checkpoints kontrolltingimused A set of conditions that well-formed artifacts
of a particular type should exhibit. May also
be stated in the form of questions which
should be answered in the affirmative.

class klass A description of a set of objects that share the
same attributes, operations, methods,
relationships, and semantics. A class may use
a set of interfaces to specify collections of
operations it provides to its environment. See:
interface.

class diagram klassiskeem A diagram that shows a collection of
declarative (static) model elements, such as
classes, types, and their contents and
relationships.

client klient A classifier that requests a service from
another classifier. Contrast: supplier.

classifier klassifikaator A mechanism that describes behavioral and
structural features. Classifiers include
interfaces, classes, datatypes, and
components.

collaboration koostöö (1) Is a description of a collection of objects
that interact to implement some behavior
within a context. It describes a society of

within a context. It describes a society of
cooperating objects assembled to carry out
some purpose. (2) It captures a more holistic
view of behavior in the exchange of messages
within a network of objects. (3) Collaborations
show the unity of the three major structures
underlying computation: data structure,
control flow, and data flow. (4) A
collaboration has a static and a dynamic part.
The static part describes the roles that objects
and links play in an instantiation of the
collaboration. The dynamic part consists of
one or more dynamic interactions that show
message flow over time in the collaboration to
perform computations. A collaboration may
have a set of messages to describe its dynamic
behavior. (5) A collaboration with messages is
an interaction. The specification of how an
operation or classifier, such as a use case, is
realized by a set of classifiers and associations
playing specific roles used in a specific way.
The collaboration defines an interaction. See:
interaction.

collaboration
diagram

koostööskeem (1) A collaboration diagram describes a
pattern of interaction among objects; it shows
the objects participating in the interaction by
their links to each other and the messages they
send to each other. (2) It is a class diagram
that contains classifier roles and association
roles rather than just classifiers and
associations. (3) Collaboration diagrams and
sequence diagrams both show interactions, but
they emphasize different aspects. Sequence
diagrams show time sequences clearly but do
not show object relationships explicitly.
Collaboration diagrams show object
relationships clearly, but time sequences must
be obtained from sequence numbers. A
diagram that shows interactions organized
around the structure of a model, using either
classifiers and associations or instances and
links. Unlike a sequence diagram, a
collaboration diagram shows the relationships
among the instances. Sequence diagrams and
collaboration diagrams express similar
information, but show it in different ways.
See: sequence diagram.

comment kommentaar An annotation attached to an element or a
collection of elements. A note has no
semantics. Contrast: constraint.

communicates-
association

kasutusside An association between an actor class and a
use case class, indicating that their instances
interact. The direction of the association
indicates the initiator of the communication
(Unified Process convention).

communication
association

suhtlusside In a deployment diagram an association
between nodes that implies a communication.
See: deployment diagram.

compile time kompileerimisaegne Refers to something that occurs during the
compilation of a software module. See:
modeling time, run time.

component komponent A non-trivial, nearly independent, and
replaceable part of a system that fulfills a clear
function in the context of a well-defined

function in the context of a well-defined
architecture. A component conforms to and
provides the physical realization of a set of
interfaces. A physical, replaceable part of a
system that packages implementation and
conforms to and provides the realization of a
set of interfaces. A component represents a
physical piece of implementation of a system,
including software code (source, binary or
executable) or equivalents such as scripts or
command files.

component
diagram

komponendiskeem A diagram that shows the organizations and
dependencies among components.

component-
based
development
(CBD)

komponendipõhine
arendus

The creation and deployment of software-
intensive systems assembled from components
as well as the development and harvesting of
such components.

component
subsystem

komponentalamsüsteem A stereotyped subsystem (i.e. «component»)
representing the logical abstraction in design
of a component. It realizes one or more
interfaces, and may be dependent on one or
more interfaces. It may enclose zero or more
classes, packages or other component
subsystems, none of which are visible
externally (only interfaces are visible). It may
also enclose zero or more diagrams which
illustrate internal behavior (e.g. state,
sequence or collaboration diagrams).

composite [class] liitklass A class that is related to one or more classes
by a composition relationship. See:
composition.

composite
aggregation

liitside Synonym: composition.

composite state liitolek A state that consists of either concurrent
(orthogonal) substates or sequential (disjoint)
substates. See: substate.

composite
substate

liit-alamolek A substate that can be held simultaneously
with other substates contained in the same
composite state. Synonym: region. See:
composite state.

composition kompositsioon A form of aggregation association with strong
ownership and coincident lifetime as part of
the whole. Parts with non-fixed multiplicity
may be created after the composite itself, but
once created they live and die with it (i.e.,
they share lifetimes). Such parts can also be
explicitly removed before the death of the
composite. Composition may be recursive.
Synonym: composite aggregation.

concrete konkreet[ne] An entity in a configuration that satisfies an
end-use function and can be uniquely
identified at a given reference point. (ISO)

concrete class konkreetklass A class that can be directly instantiated.
Contrast: abstract class.

concurrency konkurrentsus The occurrence of two or more activities
during the same time interval. Concurrency
can be achieved by interleaving or
simultaneously executing two or more threads.
See: thread.

concurrent
substate

konkurrentne alamolek A substate that can be held simultaneously
with other substates contained in the same
composite state. See: composite substate.
Contrast: disjoint substate.

configuration konfiguratsioon (1) general: The arrangement of a system or
network as defined by the nature, number, and
chief characteristics of its functional units;
applies to both hardware or software
configuration. (2) The requirements, design,
and implementation that define a particular
version of a system or system component. See
configuration management.

configuration
item

konfiguratsioonielement An entity in a configuration that satisfies an
end-use function and can be uniquely
identified at a given reference point. (ISO)

configuration
management

konfiguratsioonihaldus A supporting process whose purpose is to
identify, define, and baseline items; control
modifications and releases of these items;
report and record status of the items and
modification requests; ensure completeness,
consistency and correctness of the items; and
control storage, handling and delivery of the
items. (ISO)

control class kontrollklass A class used to model behavior specific to
one, or a several use cases.

constraint kitsendus A semantic condition or restriction. Certain
constraints are predefined in the UML, others
may be user defined. Constraints are one of
three extensibility mechanisms in UML. See:
tagged value, stereotype.

construction konstrueerimine The third phase of the Unified Process, in
which the software is brought from an
executable architectural baseline to the point
at which it is ready to be transitioned to the
user community.

container konteiner 1. An instance that exists to contain other
instances, and that provides operations to
access or iterate over its contents. (for
example, arrays, lists, sets). 2. A component
that exists to contain other components.

containment
hierarchy

sisalduvushierarhia A namespace hierarchy consisting of model
elements, and the containment relationships
that exist between them. A containment
hierarchy forms an acyclic graph.

context kontekst A view of a set of related modeling elements
for a particular purpose, such as specifying an
operation.

core workflow põhivoog One of nine core workflows in the Rational
Unified Process: Business Modeling,
Requirements, Analysis & Design,
Implementation, Test, Deployment,
Configuration & Change Management, Project
Management, Environment. An abstract
business use case of the Software-Engineering
Business.

critical design
review (CDR)

lahenduse kriitiline
läbivaatus

In the waterfall life-cycle, the major review
held when the detailed design is completed
(see Guidelines: Project Plan).

customer tellija A person or organization, internal or external
to the producing organization, who takes
financial responsibility for the system. In a
large system this may not be the end user. The
customer is the ultimate recipient of the
developed product and its artifacts. See also:
stakeholder.

cycle tsükkel One complete pass through the four phases:
inception, elaboration, construction and
transition. The span of time between the

transition. The span of time between the
beginning of the inception phase and the end
of the transition phase.

datatype andmetüüp A descriptor of a set of values that lack
identity and whose operations do not have side
effects. Datatypes include primitive pre-
defined types and user-definable types. Pre-
defined types include numbers, string and
time. User-definable types include
enumerations.

deadlock tupik A condition in which two independent threads
of control are blocked, each waiting for the
other to take some action. Deadlock often
arises from adding synchronization
mechanisms to avoid race conditions.

defect defekt An anomaly, or flaw, in a delivered work
product. Examples include such things as
omissions and imperfections found during
early lifecycle phases and symptoms of faults
contained in software sufficiently mature for
test or operation. A defect can be any kind of
issue you want tracked and resolved. See also:
change request.

defining model
[MOF]

defineeriv mudel The model on which a repository is based.
Any number of repositories can have the same
defining model.

delegation delegeerimine The ability of an object to issue a message to
another object in response to a message.
Delegation can be used as an alternative to
inheritance. Contrast: inheritance.

deliverable saadus An output from a process that has a value,
material or otherwise, to a customer or other
stakeholder.

dependency sõltuvus A relationship between two modeling
elements, in which a change to one modeling
element (the independent element) will affect
the other modeling element (the dependent
element).

deployment evitus A core process workflow in the software-
engineering process, whose purpose is to
ensure a successful transition of the developed
system to its users. Included are artifacts such
as training materials and installation
procedures.

deployment
diagram

evitusskeem A diagram that shows the configuration of
run-time processing nodes and the
components, processes, and objects that live
on them. Components represent run-time
manifestations of code units. See: component
diagram.

deployment view evitusvaade An architectural view that describes one or
several system configurations; the mapping of
software components (tasks, modules) to the
computing nodes in these configurations.

derived element tuletiselement A model element that can be computed from
another element, but that is shown for clarity
or that is included for design purposes even
though it adds no semantic information.

design projekteerimine The part of the software development process
whose primary purpose is to decide how the
system will be implemented. During design,
strategic and tactical decisions are made to
meet the required functional and quality
requirements of a system. See analysis.

requirements of a system. See analysis.
design time projekteerimisaegne Refers to something that occurs during a

design phase of the software development
process. See: modeling time. Contrast:
analysis time.

design
mechanism

projekteerimismehhanism An architectural mechanism used during the
design process, during the period in which the
details of the design are being worked-out.
They are related to associated analysis
mechanisms, of which they are additional
refinements. A design mechanism assumes
some details of the implementation
environment, but it is not tied to a specific
implementation (as is an implementation
mechanism). For example, the analysis
mechanism for inter-process communication
may be refined by several design mechanisms
for interprocess communication (IPC): shared
memory, function-call-like IPC, semaphore-
based IPC, and so on. Each design mechanism
has certain strengths and weaknesses; the
choice of a particular design mechanism is
determined by the characteristics of the
objects using the mechanism.

design model projekteerimismudel An object model describing the realization of
use cases; serves as an abstraction of the
implementation model and its source code.

design package projekteerimispakett A collection of classes, relationships, use-case
realizations, diagrams, and other packages; it
is used to structure the design model by
dividing it into smaller parts.

design pattern projekteerimismall A specific solution to a particular problem in
software design. Design patterns capture
solutions that have developed and evolved
over time, expressed in a succinct and easily
applied form. Generally design patterns
express solutions at a lower level of
granularity than mechanisms, and may very
well be used to design a design mechanism.

design subsystem projekteerimis-
alamsüsteem

A design package that contains a collection of
design packages and classes, and used to
structure the design model by dividing it into
smaller parts. See: design package.

developer väljatöötaja A person responsible for developing the
required functionality in accordance with
project-adopted standards and procedures.
This can include performing activities in any
of the requirements, analysis & design,
implementation, and test workflows.

development
case

väljatöötusjuhtum The software-engineering process used by the
performing organization. It is developed as a
configuration, or customization, of the Unified
Process product, and adapted to the project's
needs.

development
process

väljatööteprotsess A set of partially ordered steps performed for
a given purpose during software development,
such as constructing models or implementing
models.

device vahend A type of node which provides supporting
capabilities to a processor. Although it may be
capable of running embedded programs
(device drivers), it cannot execute general-
purpose applications, but instead exists only to
serve a processor running general-purpose

serve a processor running general-purpose
applications.

diagram skeem A graphical depiction of all or part of a model.
A graphical presentation of a collection of
model elements, most often rendered as a
connected graph of arcs (relationships) and
vertices (other model elements). UML
supports the following diagrams: class
diagram, object diagram, use-case diagram,
sequence diagram, collaboration diagram,
statechart diagram, activity diagram,
component diagram, and deployment diagram.

disjoint substate ird-alamolek A substate that cannot be held simultaneously
with other substates contained in the same
composite state. See: composite state.
Contrast: concurrent substate.

distribution unit jaotusüksus A set of objects or components that are
allocated to a process or a processor as a
group. A distribution unit can be represented
by a run-time composite or an aggregate.

document dokument A document is a collection of information that
is intended to be represented on paper, or in a
medium using a paper metaphor. The paper
metaphor includes the concept of pages, and it
has either an implicit or explicit sequence of
contents. The information is in text or two-
dimensional pictures. Examples of paper
metaphors are word processor documents,
spreadsheets, schedules, Gantt charts, web-
pages, or overhead slide presentations.

document
description

dokumendi kirjeldus Describes the contents of a particular
document.

document
template

dokumendimall A concrete tool template, such as a Adobe®
FrameMaker™ or Microsoft® Word™
template.

domain valdkond An area of knowledge or activity
characterized by a family of related systems.
An area of knowledge or activity
characterized by a set of concepts and
terminology understood by practitioners in
that area.

domain model valdkonnamudel A domain model captures the most important
types of objects in the context of the domain.
The domain objects represent the entities that
exist or events that transpire in the
environment in which the system works. The
domain model is a subset of the business
object model.

dynamic
classification

dünaamiline liigitus A semantic variation of generalization in
which an object may change type or role.
Contrast: static classification.

elaboration detailimine The second phase of the process where the
product vision and its architecture are defined.

element element An atomic constituent of a model.
enclosed
document

manusdokument A document can be enclosed by another
document to collect a set of documents into a
whole; the enclosing document as well as the
individual enclosures are regarded as separate
artifacts.

enhancement
request

täiendustaotlus A type of stakeholder request that specifies a
new feature or functionality of the system. See
also: change request

entity class olemiklass A class used to model information that has
been stored by the system, and the associated

been stored by the system, and the associated
behavior. A generic class, reused in many use
cases, often with persistent characteristics. An
entity class defines a set of entity objects,
which participate in several use cases and
typically survive those use cases.

entry action sisenemistoiming An action executed upon entering a state in a
state machine regardless of the transition
taken to reach that state.

enumeration väärtustik A list of named values used as the range of a
particular attribute type. For example,
RGBColor = {red, green, blue}. Boolean is a
predefined enumeration with values from the
set {false, true}.

event sündmus The specification of a significant occurrence
that has a location in time and space. In the
context of state diagrams, an event is an
occurrence that can trigger a transition.

environment keskkond A core supporting workflow in the software-
engineering process, whose purpose is to
define and manage the environment in which
the system is being developed. Includes
process descriptions, configuration
management, and development tools.

evolution areng The life of the software after its initial
development cycle; any subsequent cycle,
during which the product evolves.

evolutionary arenguline An iterative development strategy that
acknowledges that user needs are not fully
understood and therefore requirements are
refined in each succeeding iteration
(elaboration phase).

exit action väljumistoiming An action executed upon exiting a state in a
state machine regardless of the transition
taken to exit that state.

export eksport In the context of packages, to make an
element visible outside its enclosing
namespace. See: visibility. Contrast: export
[OMA], import.

expression avaldis A string that evaluates to a value of a
particular type. For example, the expression
"(7 + 5 * 3)" evaluates to a value of type
number.

extend laiendus A relationship from an extension use case to a
base use case, specifying how the behavior
defined for the extension use case can be
inserted into the behavior defined for the base
use case.

extend-
relationship

laiendusseos An extend-relationship from a use-case class
A to a use-case class B indicates that an
instance of B may include (subject to specific
conditions specified in the extension) the
behavior specified by A. Behavior specified
by several extenders of a single target use case
can occur within a single use-case instance.

facade fassaad A special package, stereotyped «facade»,
within a subsystem that organizes and exports
all information needed by the clients of the
subsystem. Included in this package are
interfaces (where the interfaces are unique to
the subsystem), realization relationships to
interfaces outside the subsystem, and any
documentation needed by clients of the

subsystem to use the subsystem.
fault viga An accidental condition that causes a

component in the implementation model to
fail to perform its required behavior. A fault is
the root cause of one or more defects.

feature erisus An externally observable service provided by
the system which directly fulfills a
stakeholder need. A property, like operation
or attribute, which is encapsulated within a
classifier, such as an interface, a class, or a
datatype.

final state lõppolek A special kind of state signifying that the
enclosing composite state or the entire state
machine is completed.

fire vallandama To execute a state transition. See: transition.
focus of control juhtimiskese A symbol on a sequence diagram that shows

the period of time during which an object is
performing an action, either directly or
through a subordinate procedure.

formal
parameter

formaalparameeter Synonym: parameter.

framework raamstruktuur A micro-architecture that provides an
extensible template for applications within a
specific domain.

FURPS FURPS An acronym representing categories for
assessing product quality: Functionality,
Usability, Reliability, Performance,
Supportability.
(funktsionaalsus, kasutuskõlblikkus,
töökindlus, suutvus, toetatavus)

generalizable
element

üldistuv element A model element that may participate in a
generalization relationship. See:
generalization.

generalization üldistus A taxonomic relationship between a more
general element and a more specific element.
The more specific element is fully consistent
with the more general element and contains
additional information. An instance of the
more specific element may be used where the
more general element is allowed. See:
inheritance.

generation põlv Final release at the end of a cycle. JOKA: valmistoode.
“Põlv” ei haaku ju
kuidagi sellega, mida
see kolmandas veerus
olev inglise keelne
tekst räägib. Ega see
inglisekeelne termin
kah targem ei ole –
generation on
minuarust rohkem
nigu põlvkond või
nii. Ma ei imesta, kui
see mingi viga seal
RUP’is on.

green-field
development

täisväljatöötus Development "starting from scratch", as
opposed to "evolution of an existing system"
or "reengineering of a legacy piece".
(Originated from the transformation that takes
place when building a new factory on an
undeveloped site - with grass on it.)

guard condition siirdetingimus A condition that must be satisfied in order to
enable an associated transition to fire.

IEEE IEEE The Institute of Electrical and Electronics
Engineers, Inc.

ISO ISO The International Organization for
Standardization.

implementation teostus A core process workflow in the software-
engineering process, whose purpose is to
implement and unit test the classes. A
definition of how something is constructed or
computed. For example, a class is an
implementation of a type, a method is an
implementation of an operation.

implementation
inheritance

teostuspärilus The inheritance of the implementation of a
more specific element. Includes inheritance of
the interface. Contrast: interface inheritance.

implementation
mechanism

teostusmehhanism An architectural mechanism used during the
implementation process. They are refinements
of design mechanisms, and specify the exact
implementation of the mechanism. For
example, one particular implementation of the
inter-process communication analysis
mechanism is a shared memory design
mechanism utilizing a particular operating
system’s shared memory function calls.
Concurrency conflicts (inappropriate
simultaneous access to shared memory) may
be prevented using semaphores, or using a
latching mechanism, which in turn rest upon
other implementation mechanisms.

implementation
model

teostusmudel The implementation model is a collection of
components, and the implementation
subsystems that contain them.

implementation
subsystem

teostusalamsüsteem A collection of components and other
implementation subsystems, and is used to
structure the implementation model by
dividing it into smaller parts.

implementation
view

teostusvaade An architectural view that describes the
organization of the static software elements
(code, data, and other accompanying artifacts)
on the development environment, in terms of
both packaging, layering, and configuration
management (ownership, release strategy, and
so on). In the Unified Process it is a view on
the implementation model.

import import In the context of packages, a dependency that
shows the packages whose classes may be
referenced within a given package (including
packages recursively embedded within it).
Contrast: export.

import-
dependency

impordisõltuvus A stereotyped dependency in the design
whose source is a design package, and whose
target is a different design package. The
import dependency causes the public contents
of the target package to be referenceable in the
source package.

inception algatamine The first phase of the Unified Process, in
which the seed idea, request for proposal, for
the previous generation is brought to the point
of being (at least internally) funded to enter
the elaboration phase.

include sisalduvus A relationship from a base use case to an
inclusion use case, specifying how the
behavior defined for the inclusion use case can
be inserted into the behavior defined for the
base use case.

base use case.
include-
relationship

sisalduvusseos An include-relationship is a relationship from
a base use case to an inclusion use case,
specifying how the behavior defined for the
inclusion use case is explicitly inserted into
the behavior defined for the base use case.

increment inkrement The difference (delta) between two releases at
the end of subsequent iterations.

incremental inkrementaalne Qualifies an iterative development strategy in
which the system is built by adding more and
more functionality at each iteration.

inheritance pärilus The mechanism that makes generalization
possible; a mechanism for creating full class
descriptions out of individual class segments.
The mechanism by which more specific
elements incorporate structure and behavior of
more general elements related by behavior.
See generalization.

input sisendtehis An artifact used by a process. See static
artifact.

inspection inspekteerimine A formal evaluation technique in which some
artifact (model, document, software) is
examined by a person or group other than the
originator, to detect faults, violations of
development standards, and other problems.

instance isend An individual entity satisfying the description
of a class or type. An entity to which a set of
operations can be applied and which has a
state that stores the effects of the operations.
See: object.

integration integratsioon The software development activity in which
separate software components are combined
into an executable whole.

integration build
plan

integratsiooni järguplaan Defines the order in which components are to
be implemented and integrated in a specific
iteration. Enclosed in the Iteration Plan.

interaction interaktsioon A specification of how stimuli are sent
between instances to perform a specific task.
The interaction is defined in the context of a
collaboration. See collaboration.

interaction
diagram

interaktsiooniskeem A generic term that applies to several types of
diagrams that emphasize object interactions.
These include: collaboration diagrams,
sequence diagrams, and activity diagrams.

interface liides A collection of operations that are used to
specify a service of a class or a component. A
named set of operations that characterize the
behavior of an element.

interface
inheritance

liidesepärilus The inheritance of the interface of a more
specific element. Does not include inheritance
of the implementation. Contrast:
implementation inheritance.

internal
transition

sisesiire A transition signifying a response to an event
without changing the state of an object.

iteration iteratsioon A distinct sequence of activities with a base-
lined plan and valuation criteria resulting in a
release (internal or external).

key mechanism võtmemehhanism A description of how an architectural patterns
is realized in terms of patterns of interaction
between elements in the system. Presented in
the Software Architecture Document

layer kiht A specific way of grouping packages in a
model at the same level of abstraction. The
organization of classifiers or packages at the

organization of classifiers or packages at the
same level of abstraction. A layer represents a
horizontal slice through an architecture,
whereas a partition represents a vertical slice.
Contrast: partition.

link link A semantic connection among a tuple of
objects. An instance of an association. See:
association.

link end lingiots An instance of an association end. See:
association end.

logical view loogikavaade An architectural view that describes the main
classes in the design of the system: major
business-related classes, and the classes that
define key behavioral and structural
mechanisms (persistency, communications,
fault-tolerance, user-interface). In the Unified
Process, the logical view is a view of the
design model.

management haldus A core supporting workflow in the software-
engineering process, whose purpose is to plan
and manage the development project.

message teade A specification of the conveyance of
information from one instance to another, with
the expectation that activity will ensue. A
message may specify the raising of a signal or
the call of an operation.

metaclass metaklass A class whose instances are classes.
Metaclasses are typically used to construct
metamodels.

meta-metamodel meta-metamudel A model that defines the language for
expressing a metamodel. The relationship
between a meta-metamodel and a metamodel
is analogous to the relationship between a
metamodel and a model.

metamodel metamudel A model that defines the language for
expressing a model.

metaobject metaobjekt A generic term for all metaentities in a
metamodeling language. For example,
metatypes, metaclasses, metaattributes, and
metaassociations.

method meetod (1) A regular and systematic way of
accomplishing something; the detailed,
logically ordered plans or procedures followed
to accomplish a task or attain a goal. (2) UML
1.1: The implementation of an operation, the
algorithm or procedure that effects the results
of an operation. The implementation of an
operation. It specifies the algorithm or
procedure associated with an operation.

milestone tähtpunkt The point at which an iteration formally ends;
corresponds to a release point.

JOKA: verstapost?

model [MOF] mudel A semantically closed abstraction of a system.
In the Unified Process, a complete description
of a system from a particular perspective
('complete' meaning you don't need any
additional information to understand the
system from that perspective); a set of model
elements. Two models cannot overlap. A
semantically closed abstraction of a subject
system. See: system. Usage note: In the
context of the MOF specification, which
describes a meta-metamodel, for brevity the
meta-metamodel is frequently referred to as
simply the model.

simply the model.
model aspect mudeli aspekt A dimension of modeling that emphasizes

particular qualities of the metamodel. For
example, the structural model aspect
emphasizes the structural qualities of the
metamodel.

model
elaboration

mudeli detailimine The process of generating a repository type
from a published model. Includes the
generation of interfaces and implementations
which allows repositories to be instantiated
and populated based on, and in compliance
with, the model elaborated.

model element
[MOF]

mudeli element An element that is an abstraction drawn from
the system being modeled. Contrast: view
element. In the MOF specification model
elements are considered to be metaobjects.

modeling
conventions

modelleerimisreeglid How concepts will be represented, restrictions
on the modeling language that the project
team management has decided upon (i.e.
dictums such as "Do not use inheritance
between subsystems."; "Do not use extend or
include associations in the Use Case Model.";
"Do not use the friend construct in C++.").
Presented in the Software Architecture
Document.

modeling time modelleerimisaegne Refers to something that occurs during a
modeling phase of the software development
process. It includes analysis time and design
time. Usage note: When discussing object
systems, it is often important to distinguish
between modeling-time and run-time
concerns. See: analysis time, design time.
Contrast: run time.

module moodul A software unit of storage and manipulation.
Modules include source code modules, binary
code modules, and executable code modules.
See: component.

multiple
classification

mitmene liigitus A semantic variation of generalization in
which an object may belong directly to more
than one class. See: dynamic classification.

multiple
inheritance

mitmene pärilus A semantic variation of generalization in
which a type may have more than one
supertype. Contrast: single inheritance.

multiplicity võimsustik A specification of the range of allowable
cardinalities that a set may assume.
Multiplicity specifications may be given for
roles within associations, parts within
composites, repetitions, and other purposes.
Essentially a multiplicity is a (possibly
infinite) subset of the non-negative integers.
Contrast: cardinality.

multi-valued
[MOF]

mitmeväärtuseline A model element with multiplicity defined
whose Multiplicity Type:: upper attribute is
set to a number greater than one. The term
multi-valued does not pertain to the number of
values held by an attribute, parameter, etc. at
any point in time. Contrast: single-valued.

n-ary association n-ndassotsiatsioon An association among three or more classes.
Each instance of the association is an n-tuple
of values from the respective classes.
Contrast: binary association.

name nimi A string used to identify a model element.
namespace nimeruum A part of the model in which the names may

be defined and used. Within a namespace,

be defined and used. Within a namespace,
each name has a unique meaning. See: name.

node sõlm A node is classifier that represents a run-time
computational resource, which generally has
at least a memory and often processing
capability. Run-time objects and components
may reside on nodes.

object objekt An entity with a well-defined boundary and
identity that encapsulates state and behavior.
State is represented by attributes and
relationships, behavior is represented by
operations, methods, and state machines. An
object is an instance of a class. See: class,
instance.

object diagram objektiskeem A diagram that encompasses objects and their
relationships at a point in time. An object
diagram may be considered a special case of a
class diagram or a collaboration diagram. See:
class diagram, collaboration diagram.

object flow state objekti voo-olek A state in an activity graph that represents the
passing of an object from the output of actions
in one state to the input of actions in another
state.

object lifeline objekti eluiga A line in a sequence diagram that represents
the existence of an object over a period of
time. See: sequence diagram.

object model objektmudel An abstraction of a system's implementation.
operation operatsioon A service that can be requested from an object

to effect behavior. An operation has a
signature, which may restrict the actual
parameters that are possible.

operating system
process

operatsioonisüsteemi
protsess

An unique address space and execution
environment in which instances of classes and
subsystems reside and run. The execution
environment may be divided into one or more
threads of control. See also process and
thread.

originator lähetaja An originator is anyone who submits a change
request (CR). The standard change request
mechanism requires the originator to provide
information on the current problem, and a
proposed solution in accordance with the
change request form.

output väljundtehis Any artifact that is the result of a process step.
See deliverable.

package pakett A general purpose mechanism for organizing
elements into groups. Packages may be nested
within other packages.

parameter parameeter The specification of a variable that can be
changed, passed, or returned. A parameter
may include a name, type, and direction.
Parameters are used for operations, messages,
and events. Synonyms: formal parameter.
Contrast: argument.

parameterized
element

parameetritega element The descriptor for a class with one or more
unbound parameters. Synonym: template.

parent ema In a generalization relationship, the
generalization of another element, the child.
See: subclass, subtype. Contrast: child.

participates osaleb The connection of a model element to a
relationship or to a reified relationship. For
example, a class participates in an association,
an actor participates in a use case.

partition sektsioon 1. activity graphs: A portion of an activity
graphs that organizes the responsibilities for
actions. See: swimlane. 2. architecture: A
subset of classifiers or packages at the same
level of abstraction. A partition represents a
vertical slice through an architecture, whereas
a layer represents a horizontal slice. Contrast:
layer.

pattern mall A scheme for describing design fragments or
collections of class templates so that they can
be configured and reused.

persistent object püsiv objekt An object that exists after the process or
thread that created it has ceased to exist.

phase faas The time between two major project
milestones, during which a well-defined set of
objectives is met, artifacts are completed, and
decisions are made to move or not move into
the next phase.

post-condition järeltingimus A textual description defining a constraint on
the system when a use case has terminated. A
constraint that must be true at the completion
of an operation.

pre-condition eeltingimus A textual description defining a constraint on
the system when a use case may start. A
constraint that must be true when an operation
is invoked.

preliminary
design review
(PDR)

alglahenduse läbivaatus In the waterfall life-cycle, the major review
held when the architectural design is
completed (see Guidelines: Project Plan).

primitive type primitiivtüüp A pre-defined basic datatype without any
substructure, such as an integer or a string.

process protsess (1) A thread of control that can logically
execute concurrently with other processes,
specifically an operating system process. See
also: thread. (2) A set of partially ordered
steps intended to reach a goal; in software
engineering the goal is to build a software
product or to enhance an existing one; in
process engineering, the goal is to develop or
enhance a process model; corresponds to a
business use case in business engineering. 1.
A heavyweight unit of concurrency and
execution in an operating system. Contrast:
thread, which includes heavyweight and
lightweight processes. If necessary, an
implementation distinction can be made using
stereotypes. 2. A software development
process— the steps and guidelines by which to
develop a system. 3. To execute an algorithm
or otherwise handle something dynamically.

process view protsessivaade An architectural view that describes the
concurrent aspect of the system: tasks
(processes) and their interactions.

processor protsessor A type of node which possesses the capability
to run one or more processes. Generally this
requires a computational capability, memory,
input-output devices, etc. See also: node,
process, and device.

product toode Software that is the result of development, and
some of the associated artifacts
(documentation, release medium, training).

product
champion

tootejuht A high-ranking individual who owns the
vision of the product and acts as an advocate
between development and the customer.

between development and the customer.
product
requirements
document (PRD)

tootenõuete dokument
(PRD)

A high level description of the product
(system), its intended use, and the set of
features it provides.

project manager projektijuht The worker with overall responsibility for the
project. The Project Manager needs to ensure
tasks are scheduled, allocated and completed
in accordance with project schedules, budgets
and quality requirements.

Project Review
Authority (PRA)

projekti läbivaatusorgan The organizational entity to which the Project
Manager reports. The PRA is responsible for
ensuring that a software project complies with
policies, practices and standards (see
Concepts: Organizational Context for the
Rational Unified Process).

projection projektsioon A mapping from a set to a subset of it.
property omadus A named value denoting a characteristic of an

element. A property has semantic impact.
Certain properties are predefined in the UML;
others may be user defined. See: tagged value.

protocol protokoll A specification of a compatible set of
messages used to communicate between
capsules. The protocol defines a set of
incoming and outgoing messages types (e.g.
operations, signals), and optionally a set of
sequence diagrams which define the required
ordering of messages and a state machine
which specifies the abstract behavior that the
participants in a protocol must provide.

prototype prototüüp A release that is not necessarily subject to
change management and configuration
control.

pseudo-state pseudoolek A vertex in a state machine that has the form
of a state, but doesn’t behave as a state.
Pseudo-states include initial and history
vertices.

published model
[MOF]

avaldatud mudel A model which has been frozen, and becomes
available for instantiating repositories and for
the support in defining other models. A frozen
model’s model elements cannot be changed.

qualifier kvalifikaator An association attribute or tuple of attributes
whose values partition the set of objects
related to an object across an association.

quality
assurance (QA)

kvaliteedi tagamine The function of Quality Assurance is the
responsibility of (reports to) the Project
Manager and is responsible for ensuring that
project standards are correctly and verifiably
followed by all project staff.

race condition trügimine A condition which occurs when two or more
independent tasks may simultaneously access
and modify the same state information. This
condition can lead to inconsistent behavior of
the system and is a fundamental issue in
concurrent system design.

rank kaalukus An attribute of a use case or scenario that
describes its impact on the architecture, or its
importance for a release.

rationale põhjendus A statement, or explanation of the reasons for
a choice

receive [a
message]

vastu võtma The handling of a stimulus passed from a
sender instance. See: sender, receiver.

receiver [object] vastuvõtja The object handling a stimulus passed from a
sender object. Contrast: sender.

reception vastuvõtt A declaration that a classifier is prepared to
react to the receipt of a signal.

reference viide 1. A denotation of a model element. 2. A
named slot within a classifier that facilitates
navigation to other classifiers. Synonym:
pointer.

refinement täpsustus A relationship that represents a fuller
specification of something that has already
been specified at a certain level of detail. For
example, a design class is a refinement of an
analysis class.

relationship seos A semantic connection among model
elements. Examples of relationships include
associations and generalizations.

release redaktsioon A subset of the end-product that is the object
of evaluation at a major milestone. See:
prototype, baseline.

release manager redaktsioonijuht A release manager is responsible for ensuring
that all software assets are controlled and
configurable into internal and external
releases as required.

report aruanne An automatically generated description,
describing one or several artifacts. A report is
not an artifact in itself. A report is in most
cases a transitory product of the development
process, and a vehicle to communicate certain
aspects of the evolving system; it is a snapshot
description of artifacts that are not documents
themselves.

repository hoidla A storage place for object models, interfaces,
and implementations.

requirement nõue A requirement describes a condition or
capability to which a system must conform;
either derived directly from user needs, or
stated in a contract, standard, specification, or
other formally imposed document. See:
Concept: Requirements A desired feature,
property, or behavior of a system.

requirement
attribute

nõude atribuut Information associated with a particular
requirement providing a link between the
requirement and other project elements - e.g.,
priorities, schedules, status, design elements,
resources, costs, hazards.

requirements nõuded A core process workflow in the software-
engineering process, whose purpose is to
define what the system should do. The most
significant activities are to develop a vision, a
use-case model and software requirements
specifications.

requirements
management

nõudehaldus A systematic approach to eliciting, organizing
and documenting the requirements of the
system, and establishing and maintaining
agreement between the customer and the
project team on the changing requirements of
the system. See: Concept: Requirements
Management.

requirements
tracing

nõudejälitus The linking of a requirement to other
requirements and to other associated project
elements.

requirement type nõude tüüp A categorization of requirements (e.g.,
stakeholder need, feature, use case,
supplementary requirement, test requirement,
documentation requirement, hardware
requirement, software requirement, etc.) based

requirement, software requirement, etc.) based
on common characteristics and attributes. See:
Concept: Requirement Types

responsibility kohustus A contract or obligation of a classifier.
result tulem Synonym of output. See also deliverable.
review läbivaatus A review is a group activity carried out to

discover potential defects and to assess the
quality of a set of artifacts.

reuse taaskasutus Further use or repeated use of an artifact The
use of a pre-existing artifact.

risk risk An ongoing or upcoming concern that has a
significant probability of adversely affecting
the success of major milestones.

role roll The behavior of a design element participating
in a particular context (e.g. use-case
realization). See also: analysis class. The
named specific behavior of an entity
participating in a particular context. A role
may be static (e.g., an association end) or
dynamic (e.g., a collaboration role).

run time käitusfaas The period of time during which a computer
program executes. Contrast: modeling time.

scenario stsenaarium A described use-case instance, a subset of a
use case. A specific sequence of actions that
illustrates behaviors. A scenario may be used
to illustrate an interaction or the execution of a
use case instance. See: interaction.

scope
management

ulatuse haldus The process of prioritizing and determining
the set of requirements that can be
implemented in a particular release cycle,
based on the resources and time available.
This process continues throughout the
lifecycle of the project as changes occur. See
also: change management.

schema [MOF] komplekt In the context of the MOF, a schema is
analogous to a package which is a container of
model elements. Schema corresponds to an
MOF package. Contrast: metamodel, package
corresponds to an MOF package.

semantic
variation point

semantilise vabaduse
punkt

A point of variation in the semantics of a
metamodel. It provides an intentional degree
of freedom for the interpretation of the
metamodel semantics.

send [a message] saatma The passing of a stimulus from a sender
instance to a receiver instance. See: sender,
receiver.

sender [object] saatja The object passing a stimulus to a receiver
object. Contrast: receiver.

sequence
diagram

järgnevusskeem A diagram that shows object interactions
arranged in time sequence. In particular, it
shows the objects participating in the
interaction and the sequence of messages
exchanged. Unlike a collaboration diagram, a
sequence diagram includes time sequences but
does not include object relationships. A
sequence diagram can exist in a generic form
(describes all possible scenarios) and in an
instance form (describes one actual scenario).
Sequence diagrams and collaboration
diagrams express similar information, but
show it in different ways. See: collaboration
diagram.

signal signaal The specification of an asynchronous stimulus
communicated between instances. Signals

communicated between instances. Signals
may have parameters.

signature signatuur The name and parameters of a behavioral
feature. A signature may include an optional
returned parameter.

single
inheritance

ainupärilus A semantic variation of generalization in
which a type may have only one supertype.
Synonym: multiple inheritance [OMA].
Contrast: multiple inheritance.

single valued
[MOF]

üheväärtuseline A model element with multiplicity defined is
single valued when its Multiplicity Type::
upper attribute is set to one. The term single-
valued does not pertain to the number of
values held by an attribute, parameter, etc., at
any point in time, since a single-valued
attribute (for instance, with a multiplicity
lower bound of zero) may have no value.
Contrast: multi-valued.

software
architecture

tarkvara arhitektuur Software architecture encompasses: (1) the
significant decisions about the organization of
a software system, (2)the selection of the
structural elements and their interfaces by
which the system is composed together with
their behavior as specified in the collaboration
among those elements, (3)the composition of
the structural and behavioral elements into
progressively larger subsystems, (4)the
architectural style that guides this
organization, these elements and their
interfaces, their collaborations, and their
composition. Software architecture is not
only concerned with structure and behavior,
but also with usage, functionality,
performance, resilience, reuse,
comprehensibility, economic and technology
constraints and tradeoffs, and aesthetic
concerns.

Software
Engineering
Process
Authority
(SEPA)

tarkvaratehniline
protsessiorgan

The organizational entity with responsibility
for process definition, assessment and
improvement (see Concepts: Organizational
Context for the Rational Unified Process).

software
requirement

tarkvaranõue A specification of an externally observable
behavior of the system, (e.g., inputs to the
system, outputs from the system, functions of
the system, attributes of the system, or
attributes of the system environment).

software
requirements
specifications
(SRS)

terkvaranõuete
spetsifikatsioon

A set of requirements which completely
defines the external behavior of the system to
be built. (sometimes called a functional
specification)

software
specification
review (SSR)

tarkvaraspetsifikatsiooni
läbivaatus

In the waterfall life-cycle, the major review
held when the software requirements
specification is complete (see Guidelines:
Project Plan).

specification spetsifikatsioon A declarative description of what something is
or does. Contrast: implementation.

stakeholder osanik An individual who is materially affected by
the outcome of the system.

JOKA: asjast
huvitatu. “Osanik
jätab mulje, justkui
oleks kah pappi sisse
pannud juba, aga ei
pruugi. Stakeholder

võib olla ka
potentsiaalne
tulevane kasutaja, kes
pole veel millegi eest
maksnud, aga kelle
arvamust kuulda
võetakse.

stakeholder need osaniku tarve The business or operational problem
(opportunity) that must be fulfilled in order to
justify purchase or use.

stakeholder
request

osaniku taotlus A request of any type (e.g., Change Request,
enhancement request, request for a
requirement change, defect) from a
stakeholder.

state olek A condition or situation during the life of an
object during which it satisfies some
condition, performs some activity, or waits for
some event. Contrast: state [OMA].

statechart
diagram

olekuskeem A diagram that shows a state machine. See:
state machine.

state machine olekumasin A state machine specifies the behavior of a
model element, defining its response to events
and the life cycle of the object. A behavior
that specifies the sequences of states that an
object or an interaction goes through during its
life in response to events, together with its
responses and actions.

static artifact staatiline tehis An artifact that is used, but not changed, by a
process.

static
classification

staatiline liigitus A semantic variation of generalization in
which an object may not change type or may
not change role. Contrast: dynamic
classification.

stereotype stereotüüp A meta-classification of an element.
Stereotypes have semantic implications which
can be specified for every specific stereotype
value. See UML Stereotypes in the Rational
Unified Process for information on the pre-
defined stereotypes in use in the Rational
Unified Process. A new type of modeling
element that extends the semantics of the
metamodel. Stereotypes must be based on
certain existing types or classes in the
metamodel. Stereotypes may extend the
semantics, but not the structure of pre-existing
types and classes. Certain stereotypes are
predefined in the UML, others may be user
defined.

stimulus stiimul The passing of information from one instance
to another, such as raising a signal or invoking
an operation. The receipt of a signal is
normally considered an event. See: message.

string string A sequence of text characters. The details of
string representation depend on
implementation, and may include character
sets that support international characters and
graphics.

structural
feature

struktuurne erisus A static feature of a model element, such as an
attribute.

structural model
aspect

struktuurne mudeliaspekt A model aspect that emphasizes the structure
of the objects in a system, including their
types, classes, relationships, attributes, and
operations.

stub makett A component containing functionality for
testing purposes. A stub is either a pure
"dummy", just returning some predefined
values, or it is "simulating" a more complex
behavior.

subactivity state alamtegevusolek A state in an activity graph that represents the
execution of a non-atomic sequence of steps
that has some duration.

subclass alamklass In a generalization relationship, the
specialization of another class; the superclass.
See: generalization. Contrast: superclass.

submachine state alammasinaolek A state in a state machine which is equivalent
to a composite state but its contents is
described by another state machine.

substate osaolek A state that is part of a composite state. See:
concurrent substate, disjoint substate.

subsystem alamsüsteem A model element which has the semantics of a
package, such that it can contain other model
elements, and a class, such that it has
behavior. (The behavior of the subsystem is
provided by classes or other subsystems it
contains). A subsystem realizes one or more
interfaces, which define the behavior it can
perform. A subsystem is a grouping of model
elements, of which some constitute a
specification of the behavior offered by the
other contained model elements. See package.
See: system.

subtype alamtüüp In a generalization relationship, the
specialization of another type; the supertype.
See: generalization. Contrast: supertype.

superclass ülaklass In a generalization relationship, the
generalization of another class; the subclass.
See: generalization. Contrast: subclass.

supertype ülatüüp In a generalization relationship, the
generalization of another type; the subtype.
See: generalization. Contrast: subtype.

supplier tarnija A classifier that provides services that can be
invoked by others. Contrast: client.

swimlane rada A partition on a activity diagram for
organizing the responsibilities for actions.
Swimlanes typically correspond to
organizational units in a business model. See:
partition.

synch state sünkroolek A vertex in a state machine used for
synchronizing the concurrent regions of a state
machine.

synchronous
action

sünkroonne toiming A request where the sending object pauses to
wait for results. Contrast: asynchronous
action.

system süsteem As an instance, an executable configuration of
a software application or software application
family; the execution is done on a hardware
platform. As a class, a particular software
application or software application family that
can be configured and installed on a hardware
platform. In a general sense, an arbitrary
system instance. 1. A collection of connected
units that are organized to accomplish a
specific purpose. A system can be described
by one or more models, possibly from
different viewpoints. Synonym: physical
system. 2. A top-level subsystem.

system
requirements
review (SRR)

süsteeminõuete läbivaatus In the waterfall life-cycle, the name of the
major review held when the system
specification is completed (see Guidelines:
Project Plan).

tagged value sildiga väärtus The explicit definition of a property as a
name-value pair. In a tagged value, the name
is referred as the tag. Certain tags are
predefined in the UML; others may be user
defined. Tagged values are one of three
extensibility mechanisms in UML. See:
constraint, stereotype.

target (for test) testredaktsioon A build that is an object for testing. See: build.
task tegum See: operating system process, process and

thread.

team leader tiimijuht The team leader is the interface between
project management and developers. The team
leader is responsible for ensuring that a task is
allocated and monitored to completion. The
team leader is responsible for ensuring that
development staff follow project standards,
and adhere to project schedules.

technical
authority

tehniline organ The project's technical authority has the
authority and technical expertise to arbitrate
on if, and how, a change request is to be
implemented. The technical authority defines
change tasks, and estimates the effort of
engineering the work tasks (corresponding to
a change request).

template tehisemall A pre-defined structure for an artifact.
Synonym: parameterized element.

test test A core process workflow in the software-
engineering process whose purpose is to
integrate and test the system.

test case testjuhtum A set of test inputs, execution conditions, and
expected results developed for a particular
objective, such as to exercise a particular
program path or to verify compliance with a
specific requirement.

test coverage testi katvus The degree to which a given test or set of tests
addresses all specified test cases for a given
system or component.

test driver testidraiver A software module or application used to
invoke a test item and, often, provide test
inputs (data), control and monitor execution,
and report test results. A test driver automates
the execution of test procedures.

test item testredaktsioon A build which is an object of testing. See:
build.

test procedure testimisprotseduur A test procedure is a set of detailed
instructions for the set-up, execution, and
evaluation of results for a given test case.

thread lõim An independent computation executing within
an the execution environment and address
space defined by an enclosing operating
system process. Also sometimes called a
'lightweight process'.

thread [of
control]

käsulõim A single path of execution through a program,
a dynamic model, or some other
representation of control flow. Also, a
stereotype for the implementation of an active
object as lightweight process. See process.

time hetk A value representing an absolute or relative
moment in time.

time event ajasündmus An event that denotes the time elapsed since
the current state was entered. See: event.

time expression ajaavaldis An expression that resolves to an absolute or
relative value of time.

timing mark ajamärgis A denotation for the time at which an event or
message occurs. Timing marks may be used in
constraints.

tool mentor instrumentaaljuhis A description which provides practical
guidance on how to perform specific process
activities or steps using a specific software
tool.

traceability jälitatavus The ability to trace a project element to other
related project elements, especially those
related to requirements.

trace jälg A dependency that indicates a historical or
process relationship between two elements
that represent the same concept without
specific rules for deriving one from the other.

transient object ajutine objekt An object that exists only during the execution
of the process or thread that created it.

transition siire The fourth phase of the process in which the
software is turned over to the user community.
A relationship between two states indicating
that an object in the first state will perform
certain specified actions and enter the second
state when a specified event occurs and
specified conditions are satisfied. On such a
change of state, the transition is said to fire.

type tüüp Description of a set of entities which share
common characteristics, relations, attributes,
and semantics. A stereotype of class that is
used to specify a domain of instances (objects)
together with the operations applicable to the
objects. A type may not contain any methods.
See: class, instance. Contrast: interface.

type expression tüübiavaldis An expression that evaluates to a reference to
one or more types.

UML UML Unified Modeling Language [UML98]. In the
Rational Unified Process Glossary, definitions
from the Unified Modeling Language are
indicated by the symbol:

uninterpreted tõlgenduseta A placeholder for a type or types whose
implementation is not specified by the UML.
Every uninterpreted value has a corresponding
string representation. See: any [CORBA].

usage kasutus A dependency in which one element (the
client) requires the presence of another
element (the supplier) for its correct
functioning or implementation.

use case (class) kasutusklass A use case defines a set of use-case instances,
where each instance is a sequence of actions a
system performs that yields an observable
result of value to a particular actor. A use-case
class contains all main, alternate flows of
events related to producing the 'observable
result of value'. Technically, a use-case is a
class whose instances are scenarios. The
specification of a sequence of actions,
including variants, that a system (or other
entity) can perform, interacting with actors of
the system. See: use-case instances.

JOKA:
kasutusjuhtum.
“Klass” on kuidagi
liiga tehniline, kuna
sellest terminist
(RUP’i arvates) peaks
ka klient aru saama.
ARNE: sekundeerin
jokale. Sama ka
ülejäänud UC
terminite puhul

use-case diagram kasutusklassiskeem A diagram that shows the relationships among
actors and use cases within a system.

use-case instance kasutusklassi isend A sequence of actions performed by a system
that yields an observable result of value to a
particular actor. The performance of a
sequence of actions being specified in a use
case. An instance of a use case. See: use-case
class.

use-case model kasutusklassimudel A model that describes a system’s functional
requirements in terms of use cases.

use-case package kasutusklassipakett A use-case package is a collection of use
cases, actors, relationships, diagrams, and
other packages; it is used to structure the use-
case model by dividing it into smaller parts.

use-case
realization

kasutusklassi teostus A use-case realization describes how a
particular use case is realized within the
design model, in terms of collaborating
objects.

use-case view kasutusklassivaade An architectural view that describes how
critical use cases are performed in the system,
focusing mostly on architecturally significant
components (objects, tasks, nodes). In the
Unified Process, it is a view of the use-case
model.

utility utiliit A stereotype that groups global variables and
procedures in the form of a class declaration.
The utility attributes and operations become
global variables and global procedures,
respectively. A utility is not a fundamental
modeling construct, but a programming
convenience.

version versioon A variant of some artifact; later versions of an
artifact typically expand on earlier versions.

view vaade A simplified description (an abstraction) of a
model, which is seen from a given perspective
or vantage point and omits entities that are not
relevant to this perspective. See also
architectural view. A projection of a model,
which is seen from a given perspective or
vantage point and omits entities that are not
relevant to this perspective.

view element vaate element A view element is a textual and/or graphical
projection of a collection of model elements.

view projection vaate projektsioon A projection of model elements onto view
elements. A view projection provides a
location and a style for each view element.

visibility nähtavus An enumeration whose value (public,
protected, or private) denotes how the model
element to which it refers may be seen outside
its enclosing namespace.

vision nägemus The user's or customer's view of the product to
be developed, specified at the level of key
stakeholder needs and features of the system.

value väärtus An element of a type domain.
vertex tipp A source or a target for a transition in a state

machine. A vertex can be either a state or a
pseudo-state. See: state, pseudo-state.

work guideline tööjuhis A description which provides practical
guidance on how to perform an activity or set
of activities. It usually considers techniques
which are useful during the activity.

worker töötaja A definition of the behavior and
responsibilities of an individual, or a set of
individuals working together as a team, within
the context of a software engineering
organization. The worker represents a role

organization. The worker represents a role
played by individuals on a project, and defines
how they carry out work.

workflow töövoog The sequence of activities performed in a
business that produces a result of observable
value to an individual actor of the business.

workflow detail töövoolõik A grouping of activities which are performed
in close collaboration to accomplish some
result. The activities are typically performed
either in parallel or iteratively, with the output
from one activity serving as the input to
another activity. Workflow details are used to
group activities to provide a higher level of
abstraction and to improve the
comprehensibility of workflows.

